On distribution of a maximum of random variables
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 15 (2020) no. 2, pp. 124-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a method for identifying by the Monte Carlo method distributions of fuzzy random variables, in the parametric setting of which there is a maximum function of weighted random variables.
Keywords: fuzzy random variable, possibility, maximum, Monte Carlo method.
@article{FSSC_2020_15_2_a3,
     author = {S. A. Rogonov and I. S. Soldatenko},
     title = {On distribution of a maximum of random variables},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {124--136},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2020_15_2_a3/}
}
TY  - JOUR
AU  - S. A. Rogonov
AU  - I. S. Soldatenko
TI  - On distribution of a maximum of random variables
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2020
SP  - 124
EP  - 136
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2020_15_2_a3/
LA  - ru
ID  - FSSC_2020_15_2_a3
ER  - 
%0 Journal Article
%A S. A. Rogonov
%A I. S. Soldatenko
%T On distribution of a maximum of random variables
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2020
%P 124-136
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2020_15_2_a3/
%G ru
%F FSSC_2020_15_2_a3
S. A. Rogonov; I. S. Soldatenko. On distribution of a maximum of random variables. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 15 (2020) no. 2, pp. 124-136. http://geodesic.mathdoc.fr/item/FSSC_2020_15_2_a3/

[1] Rao M. B., Rashed A., “Some comments on fuzzy variables”, Fuzzy Sets and Systems, 6 (1981), 285–292 (in Russian) | DOI | MR | Zbl

[2] Yazenin A., Wagenknecht M., Possibilistic Optimization. A Measure-Based Approach, Brandenburgische Technische Universitat, Cotbus, Germany, 1996, 133 pp.

[3] Soldatenko I. S., “On the weighted sum of mutually Tw-related fuzzy variables”, Herald of Tver State University. Series: Applied Mathematics, 2007, no. 4, 63–77 (in Russian)

[4] Yazenin A. V., Basic concepts of the theory of possibilities. Mathematical decision-making apparatus in a hybrid uncertainty, Fizmatlit Publ., Moscow, 2016, 144 pp. (in Russian)

[5] Feng Y., Hu L., Shu H., “The variance and covariance of fuzzy random variables and their applications”, Fuzzy Sets and Systems, 120:3 (2001), 487–497 | DOI | MR | Zbl

[6] Dubois D., Prade H., Theorie des Possibilites, Application a la Representation des Connaissances en Informatique, Masson, Paris, 1988 | MR | MR

[7] Yazenin A. V., “On the problem of possibilistic optimization”, Fuzzy Sets and Systems, 81 (1996), 133–140 | DOI | MR | Zbl

[8] Nahmias S., “Fuzzy variables in a random environment”, Advances in Fuzzy Set Theory and Applications, eds. M.M. Gupta, R.K. Ragade, R.R. Yager, North-Holland, Amsterdam, 1979, 165–180 | MR

[9] Nguyen H. T., Walker E. A., A first cours in fuzzy logic, CRC Press, 1997 | MR

[10] Dubois D., Prade H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980 | MR | Zbl

[11] Dubois D., Prade H., “Fuzzy numbers: an overview”, Analysis of Fuzzy Information, v. 2, ed. J. Bezdek, CRC-Press, Boca Raton, 1988, 3–39 | MR

[12] Markowitz H., “Portfolio Selection”, The Journal of Finance, 7:1 (1952), 77–91 | DOI | MR