On using neurocontrol with delay in output feedback stabilization problem
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 15 (2020) no. 1, pp. 26-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is proposed for stabilizing an inverted pendulum on a cart by the feedback that is independent of the speed values. The possibility of using only coordinate values is provided by feedback delay. The design uses a neural network, assuming some stabilizing state control as known. The latter is constructed in the form of switching control, allowing arbitrary deviations of the pendulum from the desired upper position.
Keywords: output stabilization, mechanical system, neurocontrol.
@article{FSSC_2020_15_1_a1,
     author = {N. O. Sedova and S. V. Tokmakov},
     title = {On using neurocontrol with delay in output feedback stabilization problem},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {26--42},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2020_15_1_a1/}
}
TY  - JOUR
AU  - N. O. Sedova
AU  - S. V. Tokmakov
TI  - On using neurocontrol with delay in output feedback stabilization problem
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2020
SP  - 26
EP  - 42
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2020_15_1_a1/
LA  - ru
ID  - FSSC_2020_15_1_a1
ER  - 
%0 Journal Article
%A N. O. Sedova
%A S. V. Tokmakov
%T On using neurocontrol with delay in output feedback stabilization problem
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2020
%P 26-42
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2020_15_1_a1/
%G ru
%F FSSC_2020_15_1_a1
N. O. Sedova; S. V. Tokmakov. On using neurocontrol with delay in output feedback stabilization problem. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 15 (2020) no. 1, pp. 26-42. http://geodesic.mathdoc.fr/item/FSSC_2020_15_1_a1/

[1] Andreev A. S., Peregudova O. A., “Two-link manipulator control synthesis without velocity measuring”, Automation of management processes, 42:4 (2015), 81–89 (in Russian)

[2] Fridman E., Shaikhet L. E., “Delay-induced stability of vector second-order systems via simple Lyapunov functionals”, Automatica, 74 (2016), 288–296 | MR | Zbl

[3] Roose A. I., Yahya S., Al-Rizzo H., “Fuzzy-logic control of an inverted pendulum on a cart”, Computers and Electrical Engineering, 61 (2017), 31–47 | DOI

[4] Dotoli M., Lino P., Turchiano B., “A decoupled fuzzy sliding mode approach to swing-up and stabilize an inverted pendulum”, IFAC Proceedings Volumes, 36:18 (2003), 113–118

[5] Mladenov V., “Application of neural networks for control of inverted pendulum”, WSEAS Transactions on circuits and systems, 10:2 (2011), 49–58

[6] Zubov V. I., Lectures on control theory, Nauka Publ., Moscow, 1975 (in Russian)

[7] Tokmakov S. V., “On stabilization of linear systems by delayed feedback”, The Scientific Notes of the UlSU. Series: Mathematics and information technology, 2018, no. 1, 98–108 (in Russian)

[8] Chenzhu Ch., Nonlinear control of an inverted pendulum, Graduate qualification paper (master’s dissertation), Saint Petersburg Electrotechnical University “LETI”, 2016 (in Russian)