Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FSSC_2020_15_1_a0, author = {D. A. Molodtsov}, title = {Principles of rational analysis - derivatives and integrals}, journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a}, pages = {5--25}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FSSC_2020_15_1_a0/} }
D. A. Molodtsov. Principles of rational analysis - derivatives and integrals. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 15 (2020) no. 1, pp. 5-25. http://geodesic.mathdoc.fr/item/FSSC_2020_15_1_a0/
[1] Molodtsov D. A., “Principles of rational analysis - continuity of functions”, Fuzzy Systems and Soft Computing, 14:2 (2019), 126–141 (in Russian) | DOI
[2] Orlov I. V., Stonyakin F. S., New methods of non-smooth analysis and their applications in vector integration and optimization theory, Diajpi, Simferopol, 2016, 318 pp. (in Russian)
[3] Demyanov V. F., Shomesova V. K., “Conditional subdifferentials of convex functions”, Doklady Akademii Nauk SSSR, 242:4 (1978), 753–756 (in Russian) | MR | Zbl