Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FSSC_2019_14_2_a0, author = {V. V. Borisov and A. S. Ponomarenko and A. S. Fedulov}, title = {The problem decision of uncertainty accumulation of fuzzy-probabilistic {Bayesian} inference}, journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a}, pages = {81--91}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FSSC_2019_14_2_a0/} }
TY - JOUR AU - V. V. Borisov AU - A. S. Ponomarenko AU - A. S. Fedulov TI - The problem decision of uncertainty accumulation of fuzzy-probabilistic Bayesian inference JO - Nečetkie sistemy i mâgkie vyčisleniâ PY - 2019 SP - 81 EP - 91 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FSSC_2019_14_2_a0/ LA - ru ID - FSSC_2019_14_2_a0 ER -
%0 Journal Article %A V. V. Borisov %A A. S. Ponomarenko %A A. S. Fedulov %T The problem decision of uncertainty accumulation of fuzzy-probabilistic Bayesian inference %J Nečetkie sistemy i mâgkie vyčisleniâ %D 2019 %P 81-91 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FSSC_2019_14_2_a0/ %G ru %F FSSC_2019_14_2_a0
V. V. Borisov; A. S. Ponomarenko; A. S. Fedulov. The problem decision of uncertainty accumulation of fuzzy-probabilistic Bayesian inference. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 14 (2019) no. 2, pp. 81-91. http://geodesic.mathdoc.fr/item/FSSC_2019_14_2_a0/
[1] Filchenkov A. A., “Truth measures and probabilistic graphical models to represent knowledge with uncertainty”, SPIIRAN Proceedings, 2012, no. 4(23), 254–295 (in Russian)
[2] Tulupev A. L., Nikolenko S. I., Sirotkin A. V., Bayesian Networks: A Probabilistic Logic Approach, Nauka Publ., SPb., 2006, 607 pp. (in Russian)
[3] Koller D., Friedman N., Probabilistic Graphical Models: Principles and Techniques, The MIT Press, 2009, 1231 pp.
[4] Averkin A. N., Kosterev V. V., “Triangular norms in artificial intelligence systems”, Journal of Computer and Systems Sciences International, 39:5 (2000), 772–784
[5] Pan H., Liu L., “Fuzzy Bayesian networks - a general formalism for representation, inference and learning with hybrid Bayesian networks”, International Journal of Pattern Recognition and Artificial Intelligence, 14:7 (2000), 941–962
[6] Ren J., Wang J., Jenkinson I., Xu D. L., Yang J. B., “An offshore risk analysis method based on fuzzy Bayesian networks”, EPSRC report, 2005, 251–257
[7] Halliwell J., Keppens J., Shen Q., “Linguistic Bayesian networks for reasoning with subjective probabilities in forensic statistics”, Proc. of the 5th International Conference on AI and Law, 2003, 42–50
[8] Leon-Rojas J. M., Masero V., Morales M., “On the fuzzy Bayesian inference of population annoyance level caused by noise exposure”, Proceedings of the 2003 ACM symposium on Applied computing, 2003, 227–234
[9] Borisov V. V., Belozerskij A. Yu., “Risk analysis based on fuzzy Bayesian networks”, Neurocomputers: development, application, 2009, no. 8, 23–30 (in Russian)
[10] Borisov V. V., Zakharov A. S., “Approximate reasoning based on temporal fuzzy Bayesian networks”, Software and Systems, 2016, no. 2 (114), 27–33 (in Russian)
[11] Fedulov A. S., “Type of cooperation of unclear numbers, limiting growth of vagueness at implementation of operations of unclear arithmetic”, Bulletin of the Moscow Energy Institute, 2006, no. 1, 101–109 (in Russian)
[12] Borisov V. V., Fedulov A. S., Zernov M. M., Osnovy nechetkoj arifmetiki, Tutorial, v. 2, Goryachaya liniya - Telekom, Moscow, 2014, 98 pp. (in Russian)
[13] Zakharov A. S., Metody i algoritmy modelirovaniya priblizhennykh rassuzhdenij na osnove temporalnykh nechetkikh bajesovskikh setej, Avtoref. ... dis. kan. tekhn. nauk, National Research University “MPEI”, Moscow, 2016, 20 pp. (in Russian)
[14] Borisov V. V., Fedulov A. S., Zernov M. M., Fundamentals of fuzzy set theory, Tutorial, v. 1, Goryachaya liniya - Telekom, Moscow, 2014, 88 pp. (in Russian)