The problem decision of uncertainty accumulation of fuzzy-probabilistic Bayesian inference
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 14 (2019) no. 2, pp. 81-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fuzzy Bayesian models provide ample opportunities for modeling approximate reasoning under stochastic and non-stochastic uncertainty. However, one of the main problems in using these models is to ensure the correctness and interpretability of the results of fuzzy-probabilistic Bayesian inference due to the uncertainty accumulation due to multiple consideration of the blurring of the same fuzzy variables in the repeatedly repeated fuzzy computing. The article substantiates the method of solving this problem by implementing transformations between fuzzy variables on the basis of their so-called modal interaction. The proposed method can be effectively used to model approximate reasoning based on fuzzy Bayesian models.
Keywords: fuzzy Bayesian model, fuzzy-probabilistic Bayesian inference.
@article{FSSC_2019_14_2_a0,
     author = {V. V. Borisov and A. S. Ponomarenko and A. S. Fedulov},
     title = {The problem decision of uncertainty accumulation of fuzzy-probabilistic {Bayesian} inference},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {81--91},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2019_14_2_a0/}
}
TY  - JOUR
AU  - V. V. Borisov
AU  - A. S. Ponomarenko
AU  - A. S. Fedulov
TI  - The problem decision of uncertainty accumulation of fuzzy-probabilistic Bayesian inference
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2019
SP  - 81
EP  - 91
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2019_14_2_a0/
LA  - ru
ID  - FSSC_2019_14_2_a0
ER  - 
%0 Journal Article
%A V. V. Borisov
%A A. S. Ponomarenko
%A A. S. Fedulov
%T The problem decision of uncertainty accumulation of fuzzy-probabilistic Bayesian inference
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2019
%P 81-91
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2019_14_2_a0/
%G ru
%F FSSC_2019_14_2_a0
V. V. Borisov; A. S. Ponomarenko; A. S. Fedulov. The problem decision of uncertainty accumulation of fuzzy-probabilistic Bayesian inference. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 14 (2019) no. 2, pp. 81-91. http://geodesic.mathdoc.fr/item/FSSC_2019_14_2_a0/

[1] Filchenkov A. A., “Truth measures and probabilistic graphical models to represent knowledge with uncertainty”, SPIIRAN Proceedings, 2012, no. 4(23), 254–295 (in Russian)

[2] Tulupev A. L., Nikolenko S. I., Sirotkin A. V., Bayesian Networks: A Probabilistic Logic Approach, Nauka Publ., SPb., 2006, 607 pp. (in Russian)

[3] Koller D., Friedman N., Probabilistic Graphical Models: Principles and Techniques, The MIT Press, 2009, 1231 pp.

[4] Averkin A. N., Kosterev V. V., “Triangular norms in artificial intelligence systems”, Journal of Computer and Systems Sciences International, 39:5 (2000), 772–784

[5] Pan H., Liu L., “Fuzzy Bayesian networks - a general formalism for representation, inference and learning with hybrid Bayesian networks”, International Journal of Pattern Recognition and Artificial Intelligence, 14:7 (2000), 941–962

[6] Ren J., Wang J., Jenkinson I., Xu D. L., Yang J. B., “An offshore risk analysis method based on fuzzy Bayesian networks”, EPSRC report, 2005, 251–257

[7] Halliwell J., Keppens J., Shen Q., “Linguistic Bayesian networks for reasoning with subjective probabilities in forensic statistics”, Proc. of the 5th International Conference on AI and Law, 2003, 42–50

[8] Leon-Rojas J. M., Masero V., Morales M., “On the fuzzy Bayesian inference of population annoyance level caused by noise exposure”, Proceedings of the 2003 ACM symposium on Applied computing, 2003, 227–234

[9] Borisov V. V., Belozerskij A. Yu., “Risk analysis based on fuzzy Bayesian networks”, Neurocomputers: development, application, 2009, no. 8, 23–30 (in Russian)

[10] Borisov V. V., Zakharov A. S., “Approximate reasoning based on temporal fuzzy Bayesian networks”, Software and Systems, 2016, no. 2 (114), 27–33 (in Russian)

[11] Fedulov A. S., “Type of cooperation of unclear numbers, limiting growth of vagueness at implementation of operations of unclear arithmetic”, Bulletin of the Moscow Energy Institute, 2006, no. 1, 101–109 (in Russian)

[12] Borisov V. V., Fedulov A. S., Zernov M. M., Osnovy nechetkoj arifmetiki, Tutorial, v. 2, Goryachaya liniya - Telekom, Moscow, 2014, 98 pp. (in Russian)

[13] Zakharov A. S., Metody i algoritmy modelirovaniya priblizhennykh rassuzhdenij na osnove temporalnykh nechetkikh bajesovskikh setej, Avtoref. ... dis. kan. tekhn. nauk, National Research University “MPEI”, Moscow, 2016, 20 pp. (in Russian)

[14] Borisov V. V., Fedulov A. S., Zernov M. M., Fundamentals of fuzzy set theory, Tutorial, v. 1, Goryachaya liniya - Telekom, Moscow, 2014, 88 pp. (in Russian)