Stochastic penalty method in problems of probabilistic-probabilistic programming
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 14 (2019) no. 1, pp. 64-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies possibilistic-probabilistic optimization problems in the case of the weakest (drastic) $t$-norm. The stochastic penalty method is proposed to solve problems of the such class. A numerical example is provided.
Keywords: possitbilistic-probabilistic optimization, stochastic penalty method, fuzzy random variable, the weakest $t$-norm.
@article{FSSC_2019_14_1_a4,
     author = {Yu. E. Egorova},
     title = {Stochastic penalty method in problems of probabilistic-probabilistic programming},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {64--74},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a4/}
}
TY  - JOUR
AU  - Yu. E. Egorova
TI  - Stochastic penalty method in problems of probabilistic-probabilistic programming
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2019
SP  - 64
EP  - 74
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a4/
LA  - ru
ID  - FSSC_2019_14_1_a4
ER  - 
%0 Journal Article
%A Yu. E. Egorova
%T Stochastic penalty method in problems of probabilistic-probabilistic programming
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2019
%P 64-74
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a4/
%G ru
%F FSSC_2019_14_1_a4
Yu. E. Egorova. Stochastic penalty method in problems of probabilistic-probabilistic programming. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 14 (2019) no. 1, pp. 64-74. http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a4/

[1] Yazenin A. V., “Linear programming with random fuzzy data”, Soviet Journal of Computer and Systems Sciences, 1991, no. 30, 86–93 | MR | Zbl

[2] “On a method of solving a problem of linear programming with random fuzzy data”, Journal of Computer and Systems Sciences International, 36:5 (1997), 737–741 | Zbl

[3] Egorova Yu. E., Yazenin A. V., “Stochastic quasi-gradient method for solving possibilistic-probabilistic optimization task of one class”, Herald of Tver State University. Series: Applied Mathematics, 2014, no. 4, 57–70 (in Russian)

[4] Egorova Y. E., Yazenin A. V., “The problem of possibilistic-probabilistic optimization”, Journal of Computer and Systems Sciences International, 56:4 (2017), 652–667 | DOI | DOI | MR | MR | Zbl

[5] Yazenin A., Soldatenko I., “A portfolio of minimum risk in a hybrid uncertainty of a possibilistic-probabilistic type: comparative study”, Advances in Fuzzy Logic and Technology 2017, EUSFLAT 2017, IWIFSGN 2017, Advances in Intelligent Systems and Computing, 643, eds. Kacprzyk J., Szmidt E., Zadrożny S., Atanassov K., Krawczak M., 2018, 551–563 | DOI

[6] Egorova Yu. E., Yazenin A. V., “A method for minimum risk portfolio optimization under hybrid uncertainty”, Journal of Physics: Conference Series, 973 (2018), 012033 | DOI

[7] Nahmias S., “Fuzzy variables”, Fuzzy Sets and Systems, 1:2 (1978), 97–110 | DOI | MR | Zbl

[8] Nahmias S., “Fuzzy variables in a random environment”, Advances in Fuzzy Set Theory and Applications, eds. M.M. Gupta, R.K. Ragade, R.R. Yager, North-Holland, Amsterdam, 1979, 165–180 | MR

[9] Yazenin A., Wagenknecht M., Possibilistic Optimization. A Measure-Based Approach, Brandenburgische Technische Universitat, Cotbus, Germany, 1996, 133 pp.

[10] Yazenin A. V., Basic concepts of the theory of possibilities. Mathematical decision-making apparatus in a hybrid uncertainty, Fizmatlit Publ., Moscow, 2016, 144 pp. (in Russian)

[11] Khokhlov M. Yu., Yazenin A. V., “Calculation of numerical characteristics of fuzzy random variables”, Herald of Tver State University. Series: Applied Mathematics, 2003, no. 1, 39–43 (in Russian) | MR

[12] Dubois D., Prade H., Theorie des Possibilites, Application a la Representation des Connaissances en Informatique, Masson, Paris, 1988 | MR | MR

[13] Nguyen H. T., Walker E. A., A First Course in Fuzzy Logic, CRC Press, Boca Raton, 1997 | MR | Zbl

[14] Hong D. H., “Parameter estimations of mutually t-related fuzzy variables”, Fuzzy Sets and Systems, 123:1 (2001), 63–71 | DOI | MR | Zbl

[15] Ermolev Yu. M., Stochastic programming methods, Nauka Publ., M., 1976 (in Russian)

[16] Yazenin A. V., Egorova Yu. E., “On solution methods for tasks of possibilistic-probabilistic optimization”, Herald of Tver State University. Series: Applied Mathematics, 2013, no. 4 (31), 85–103 (in Russian)

[17] Egorova Yu. E., Yazenin A. V., “Parameter identification for possibilistic distribution of expected values of fuzzy random variables Tw-sums”, Herald of Tver State University. Series: Applied Mathematics, 2014, no. 2, 81–93 (in Russian) | MR