Quantum simulator for modeling intelligent fuzzy control
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 14 (2019) no. 1, pp. 19-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

When using quantum soft computing and the principles of quantum deep machine learning in problems of robust intelligent / cognitive fuzzy control of real control objects, there problems arise in the implementation of software and hardware. This complicates the development and testing of quantum algorithms, requires more complex equipment. These and many other problems can be solved by creating a simulator of intelligent control. Such a simulator simplifies the development of software and can be used in the development of commercial products and for educational purposes. This article discusses an example of controlling globally unstable system “cart-pole”. For the control of which the algorithm of quantum fuzzy inference is used, which contains in its structure the quantum genetic algorithm - an improved version of the classical genetic algorithm. The use of such an algorithm on a quantum computer solves the main problem - the speed of work, which in the classical version does not allow the system to be trained in on line. In theory, in a real quantum algorithm, a population can be made up of just one chromosome in a state of superposition. Also, the use of various types of quantum genetic algorithms on a quantum computer can solve the problem of supercomputing.
Keywords: quantum computing, quantum genetic algorithm, quantum oracle, quantum fuzzy inference, simulator.
@article{FSSC_2019_14_1_a1,
     author = {S. V. Ul'yanov and N. V. Ryabov},
     title = {Quantum simulator for modeling intelligent fuzzy control},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {19--33},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a1/}
}
TY  - JOUR
AU  - S. V. Ul'yanov
AU  - N. V. Ryabov
TI  - Quantum simulator for modeling intelligent fuzzy control
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2019
SP  - 19
EP  - 33
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a1/
LA  - ru
ID  - FSSC_2019_14_1_a1
ER  - 
%0 Journal Article
%A S. V. Ul'yanov
%A N. V. Ryabov
%T Quantum simulator for modeling intelligent fuzzy control
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2019
%P 19-33
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a1/
%G ru
%F FSSC_2019_14_1_a1
S. V. Ul'yanov; N. V. Ryabov. Quantum simulator for modeling intelligent fuzzy control. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 14 (2019) no. 1, pp. 19-33. http://geodesic.mathdoc.fr/item/FSSC_2019_14_1_a1/

[1] Ulyanov S. V., Soft computing optimizer of intelligent control system structures, US Patent No 7,219,087B2. Date of patent: May 15, 2007 [WO 2005/013019 A3, 2005]

[2] Lahoz-Beltra R., “Quantum genetic algorithms for computer scientists”, Computers, 5 (2016), 24–24 | DOI

[3] Ulyanov S. V., Intellektualnye sistemy upravleniya, v 5 t., ucheb. posobie, v. 4, Optimizator baz znanij na kvantovykh vychisleniyakh: v 2 ch. Ch. 2. Samoorganizuyushchiesya intellektualnye sistemy upravleniya, Mezhdunarodnyj universitet prirody, obshchestva i cheloveka “Dubna”, Dubna, 2014, 182 pp. (in Russian)

[4] Ulyanov S. V., Self-organizing quantum robust control methods and systems for situations with uncertainty and risk, Patent US 8788450 B2, 2014

[5] Carter T., “An introduction to information theory and entropy”, Complex Systems Summer School (Santa Fe, 2017)

[6] Shill P. C., Amin F., Murase K., “Parameter Optimization based on Quantum Genetic Algorithms for Fuzzy Logic Controller”, 27th Fuzzy System Symposium (Fukui, September 12-14, 2011), 1065–1068

[7] Shill P. C., Sarker B., Urmi M. C., Murase K., “Soft Set Theory – First results. Computers and Mathematics with Applications”, International Journal of Advanced Research in Computer Science, 2012

[8] Georgescu I. M., Ashhab S., Franco N., “Quantum simulation”, Reviews of Modern Physics, 86:153 (2014)

[9] Cirac J. I., Zoller P., “Goals and opportunities in quantum simulation”, Nature Physics, 8 (2010), 264–266 | DOI | MR

[10] Johnson T. H., Clark S. R., Jaksch D., What is quantum simulator?, Centre for Quantum Technologies, Singapore, 2014

[11] Childs A. M., Maslov D., Nam Y., Ross N. J., Su Y., “Toward the first quantum simulation with quantum speedup”, Proceedings of the National Academy of Sciences, University of Maryland, 2017 | MR

[12] Holovaty A., Kaplan-Moss J., The Definitive Guide to Django: Web Development Done Right, 2nd ed, Apress, 2019