Classification of air situation using deep neural networks and fuzzy inference
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 13 (2018) no. 2, pp. 113-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for classifying the state of the air situation is proposed. Its basis is a deep neural network that solves the problem of reducing the dimension of the input vector of features, and a fuzzy inference machine that provides an assessment of the possibility of matching the feature vector of each of the operational situations. The result of the classifier is the possibilities of all states of the air situation at the current time. The classifier is demonstrated on a model example.
Keywords: air situation state, classification, possibility theory, deep neural network, fuzzy variable, soft computing, fuzzy inference.
@article{FSSC_2018_13_2_a1,
     author = {V. I. Arefiev and A. B. Talalaev and S. V. Sorokin and A. V. Yazenin},
     title = {Classification of air situation using deep neural networks and fuzzy inference},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {113--125},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2018_13_2_a1/}
}
TY  - JOUR
AU  - V. I. Arefiev
AU  - A. B. Talalaev
AU  - S. V. Sorokin
AU  - A. V. Yazenin
TI  - Classification of air situation using deep neural networks and fuzzy inference
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2018
SP  - 113
EP  - 125
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2018_13_2_a1/
LA  - ru
ID  - FSSC_2018_13_2_a1
ER  - 
%0 Journal Article
%A V. I. Arefiev
%A A. B. Talalaev
%A S. V. Sorokin
%A A. V. Yazenin
%T Classification of air situation using deep neural networks and fuzzy inference
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2018
%P 113-125
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2018_13_2_a1/
%G ru
%F FSSC_2018_13_2_a1
V. I. Arefiev; A. B. Talalaev; S. V. Sorokin; A. V. Yazenin. Classification of air situation using deep neural networks and fuzzy inference. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 13 (2018) no. 2, pp. 113-125. http://geodesic.mathdoc.fr/item/FSSC_2018_13_2_a1/

[1] Batyrshin I. Z., Nedosekin A. O., Stetsko A. A., Tarasov V. B., Yazenin A. V., Yarushkina N. G., Fuzzy Hybrid Systems. Theory and Practice, ed. N.G. Yarushkina, Fizmatlit Publ., Moscow, 2007, 208 pp. (in Russian)

[2] Yazenin A. V., Basic concepts of the theory of possibilities. Mathematical decision-making apparatus in a hybrid uncertainty, Fizmatlit Publ., Moscow, 2016, 144 pp. (in Russian)

[3] Piegat A., Fuzzy Modeling and Control, Springer-Verlag, Berlin, Heidelberg, 2001, 725 pp.

[4] Arefev V. I., Petrov M. O., Sorokin S. V.Talalaev.A. B., Yazenin A. V., “Information system for classifying operational situation based on soft computing technologies”, Proceedings of the III All-Russian Scientific and Technical Conference “RTI Systems VKO-2015”, Bauman MSTU, Moscow, 2015, 77–90 (in Russian)

[5] Arefiev V. I., Petrov M. O., Talalaev A. B., Sorokin S. V., Yazenin A. V., “Classification methods of system condition based on soft computing technology”, Fuzzy Systems and Soft Computing, 11:1 (2016), 33–56 (in Russian)

[6] Sorokina I. V., Sorokin S. V., “On parameters estimation for multidimensional possibility distributions”, Fuzzy Systems and Soft Computing, 8:2 (2013), 101–113 (in Russian) | Zbl