Estimation of the multidimensional possibility distributions parameters in the case of an Archimedean t-norm
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 13 (2018) no. 1, pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a solution to parameters estimation problem of fuzzy distributions in m-dimensional case for Archimedean $t$-norm. Our method is based on continuous additive generator, which makes it possible to simplify and reduce the calculation of the $t$-norm (as a multidimensional function) to the calculation of the value of a one-dimensional generator.
Keywords: fuzzy distribution, parameter estimation, Archimedean $t$-norm.
@article{FSSC_2018_13_1_a3,
     author = {I. V. Sorokina},
     title = {Estimation of the multidimensional possibility distributions parameters in the case of an {Archimedean} t-norm},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a3/}
}
TY  - JOUR
AU  - I. V. Sorokina
TI  - Estimation of the multidimensional possibility distributions parameters in the case of an Archimedean t-norm
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2018
SP  - 45
EP  - 57
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a3/
LA  - ru
ID  - FSSC_2018_13_1_a3
ER  - 
%0 Journal Article
%A I. V. Sorokina
%T Estimation of the multidimensional possibility distributions parameters in the case of an Archimedean t-norm
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2018
%P 45-57
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a3/
%G ru
%F FSSC_2018_13_1_a3
I. V. Sorokina. Estimation of the multidimensional possibility distributions parameters in the case of an Archimedean t-norm. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 13 (2018) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a3/

[1] Xizhao W., Minghu H., “Note on maxmin $\mu/E$ estimation”, Fuzzy Sets and Systems, 94 (1998), 71-75 | DOI

[2] Kai-Yuan C., “Parameter estimations of normal fuzzy variables”, Fuzzy Sets and Systems, 55 (1993), 179-185 | DOI

[3] Hong D. H., “Parameter estimations of mutually T-related fuzzy variables”, Fuzzy Sets and Systems, 123 (2001), 63-71 | DOI

[4] Näther W., “On possibilistic inference”, Fuzzy Sets and Systems, 36 (1990), 327-337 | DOI

[5] Xizhao W., Minghu H., “Fuzzy linear regression analysis”, Fuzzy Sets and Systems, 52 (1992), 179-188 | DOI

[6] Zhenyuan W., Shoumei L., “Fuzzy linear regression analysis of fuzzy-valued variables”, Fuzzy Sets and Systems, 36 (1990), 125-136 | DOI

[7] Sorokina I. V., Sorokin S. V., “On parameters estimation for multidimensional possibility distributions”, Nechetkie Sistemy i Myagkie Vychisleniya [Fuzzy Systems and Soft Computing], 8:2 (2013), 101-113 (in Russian)

[8] Sorokina I., Sorokin S., Yazenin A., “Parameter estimation of multidimensional possibility distributions”, International Journal of Mathematical, Computational, Natural and Physical Engineering, 9:2 (2015), 71-74

[9] Sorokina I. V., Sorokin S. V., “Parameter estimation of multidimensional possibilistic distributions for a given risk level”, Nechetkie Sistemy i Myagkie Vychisleniya [Fuzzy Systems and Soft Computing], 10:2 (2015), 181-193 (in Russian)

[10] Nahmias S., “Fuzzy variables”, Fuzzy Sets and Systems, 1 (1978), 97-110 | DOI

[11] Yazenin A. V., Basic Concepts of the Theory of Possibilities: a Mathematical Apparatus for Decision-Making under Conditions of Hybrid Uncertainty, Fizmatlit Publ., Moscow, 2016, 144 pp. (in Russian)

[12] Rao M. B., Rashed A., “Some comments on fuzzy variables”, Fuzzy Sets and Systems, 6 (1981), 285-292 | DOI

[13] Klement E. P., Mesiar R., Pap E., “Triangular norms. I. Basic analytical and algebraic properties”, Fuzzy Sets and Systems, 143 (2004), 5-26 | DOI

[14] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper II: general constructions and parameterized families”, Fuzzy Sets and Systems, 145 (2004), 411-438 | DOI

[15] Beliakov G., Pradera A., Calvo T., Aggregation Functions: A Guide for Practitioners, Studies in Fuzziness and Soft Computing, 221, Springer-Verlag, Berlin, Heidelberg, 2007 | DOI

[16] Bugrov Ya. S., Nikol'skij S. M., Higher Mathematics, Textbook for Universities, v. 2, Differential and Integral Calculus, ed. V. A. Sadovnichiy, Drofa Publ., Moscow, 2004, 512 pp. (in Russian)