Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FSSC_2018_13_1_a3, author = {I. V. Sorokina}, title = {Estimation of the multidimensional possibility distributions parameters in the case of an {Archimedean} t-norm}, journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a}, pages = {45--57}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a3/} }
TY - JOUR AU - I. V. Sorokina TI - Estimation of the multidimensional possibility distributions parameters in the case of an Archimedean t-norm JO - Nečetkie sistemy i mâgkie vyčisleniâ PY - 2018 SP - 45 EP - 57 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a3/ LA - ru ID - FSSC_2018_13_1_a3 ER -
%0 Journal Article %A I. V. Sorokina %T Estimation of the multidimensional possibility distributions parameters in the case of an Archimedean t-norm %J Nečetkie sistemy i mâgkie vyčisleniâ %D 2018 %P 45-57 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a3/ %G ru %F FSSC_2018_13_1_a3
I. V. Sorokina. Estimation of the multidimensional possibility distributions parameters in the case of an Archimedean t-norm. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 13 (2018) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a3/
[1] Xizhao W., Minghu H., “Note on maxmin $\mu/E$ estimation”, Fuzzy Sets and Systems, 94 (1998), 71-75 | DOI
[2] Kai-Yuan C., “Parameter estimations of normal fuzzy variables”, Fuzzy Sets and Systems, 55 (1993), 179-185 | DOI
[3] Hong D. H., “Parameter estimations of mutually T-related fuzzy variables”, Fuzzy Sets and Systems, 123 (2001), 63-71 | DOI
[4] Näther W., “On possibilistic inference”, Fuzzy Sets and Systems, 36 (1990), 327-337 | DOI
[5] Xizhao W., Minghu H., “Fuzzy linear regression analysis”, Fuzzy Sets and Systems, 52 (1992), 179-188 | DOI
[6] Zhenyuan W., Shoumei L., “Fuzzy linear regression analysis of fuzzy-valued variables”, Fuzzy Sets and Systems, 36 (1990), 125-136 | DOI
[7] Sorokina I. V., Sorokin S. V., “On parameters estimation for multidimensional possibility distributions”, Nechetkie Sistemy i Myagkie Vychisleniya [Fuzzy Systems and Soft Computing], 8:2 (2013), 101-113 (in Russian)
[8] Sorokina I., Sorokin S., Yazenin A., “Parameter estimation of multidimensional possibility distributions”, International Journal of Mathematical, Computational, Natural and Physical Engineering, 9:2 (2015), 71-74
[9] Sorokina I. V., Sorokin S. V., “Parameter estimation of multidimensional possibilistic distributions for a given risk level”, Nechetkie Sistemy i Myagkie Vychisleniya [Fuzzy Systems and Soft Computing], 10:2 (2015), 181-193 (in Russian)
[10] Nahmias S., “Fuzzy variables”, Fuzzy Sets and Systems, 1 (1978), 97-110 | DOI
[11] Yazenin A. V., Basic Concepts of the Theory of Possibilities: a Mathematical Apparatus for Decision-Making under Conditions of Hybrid Uncertainty, Fizmatlit Publ., Moscow, 2016, 144 pp. (in Russian)
[12] Rao M. B., Rashed A., “Some comments on fuzzy variables”, Fuzzy Sets and Systems, 6 (1981), 285-292 | DOI
[13] Klement E. P., Mesiar R., Pap E., “Triangular norms. I. Basic analytical and algebraic properties”, Fuzzy Sets and Systems, 143 (2004), 5-26 | DOI
[14] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper II: general constructions and parameterized families”, Fuzzy Sets and Systems, 145 (2004), 411-438 | DOI
[15] Beliakov G., Pradera A., Calvo T., Aggregation Functions: A Guide for Practitioners, Studies in Fuzziness and Soft Computing, 221, Springer-Verlag, Berlin, Heidelberg, 2007 | DOI
[16] Bugrov Ya. S., Nikol'skij S. M., Higher Mathematics, Textbook for Universities, v. 2, Differential and Integral Calculus, ed. V. A. Sadovnichiy, Drofa Publ., Moscow, 2004, 512 pp. (in Russian)