Fuzzy model in the problem of the speaker identification by voice
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 13 (2018) no. 1, pp. 37-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents the speaker identification system developed on the basis of fuzzy model. The article provides the structure of a fuzzy model for solving the problem of voice identification. The method of decision-making is proposed. This method bases on the output data of the fuzzy system. Data are given about the results of identification for real speech base.
Keywords: biometric identification, text-independent speaker identification, speaker recognition, fuzzy sets, fuzzy model.
@article{FSSC_2018_13_1_a2,
     author = {T. I. Antipina},
     title = {Fuzzy model in the problem of the speaker identification by voice},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {37--43},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a2/}
}
TY  - JOUR
AU  - T. I. Antipina
TI  - Fuzzy model in the problem of the speaker identification by voice
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2018
SP  - 37
EP  - 43
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a2/
LA  - ru
ID  - FSSC_2018_13_1_a2
ER  - 
%0 Journal Article
%A T. I. Antipina
%T Fuzzy model in the problem of the speaker identification by voice
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2018
%P 37-43
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a2/
%G ru
%F FSSC_2018_13_1_a2
T. I. Antipina. Fuzzy model in the problem of the speaker identification by voice. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 13 (2018) no. 1, pp. 37-43. http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a2/

[1] Osovskij S., Neural Networks for Information Processing, Finansy i Statistika Publ., Moscow, 2002, 287 pp. (in Russian)

[2] Rutkovskaya D., Pilin'skij M., Rutkovskij L., Neural Networks, Genetic Algorithms and Fuzzy Systems, Goryachaya Liniya Publ., Moscow, 2006, 452 pp. (in Russian)

[3] Al-Jawadi A. M. A., Speech Recognition and Retrieving using Fuzzy Logic System, Technical College, Foundation of Technical, Engineering, Mosul, Iraq, 2009

[4] Arthur D., Vassilvitskii S., “K-means++: the advantages of careful seeding”, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007 (New Orleans, Louisiana, USA, January 7-9, 2007), 1027-1035

[5] Melin P., Urias J., Solano D., Soto M., Lopez M., Castillo O., “Voice recognition with neural networks, type-2 fuzzy logic and genetic algorithms”, Engineering Letters, 13:2 (2006), 108-116