@article{FSSC_2018_13_1_a2,
author = {T. I. Antipina},
title = {Fuzzy model in the problem of the speaker identification by voice},
journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
pages = {37--43},
year = {2018},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a2/}
}
T. I. Antipina. Fuzzy model in the problem of the speaker identification by voice. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 13 (2018) no. 1, pp. 37-43. http://geodesic.mathdoc.fr/item/FSSC_2018_13_1_a2/
[1] Osovskij S., Neural Networks for Information Processing, Finansy i Statistika Publ., Moscow, 2002, 287 pp. (in Russian)
[2] Rutkovskaya D., Pilin'skij M., Rutkovskij L., Neural Networks, Genetic Algorithms and Fuzzy Systems, Goryachaya Liniya Publ., Moscow, 2006, 452 pp. (in Russian)
[3] Al-Jawadi A. M. A., Speech Recognition and Retrieving using Fuzzy Logic System, Technical College, Foundation of Technical, Engineering, Mosul, Iraq, 2009
[4] Arthur D., Vassilvitskii S., “K-means++: the advantages of careful seeding”, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007 (New Orleans, Louisiana, USA, January 7-9, 2007), 1027-1035
[5] Melin P., Urias J., Solano D., Soto M., Lopez M., Castillo O., “Voice recognition with neural networks, type-2 fuzzy logic and genetic algorithms”, Engineering Letters, 13:2 (2006), 108-116