Interpretation of the emotion characteristics through the analysis of attractors reconstructed on EEG signals
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 11 (2016) no. 1, pp. 57-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes a dynamic model that allows to monitor a change in the direction of human emotions development in the course of a sequence reactions to external stimuli. This problem is solved by forming a new system of signs characterizing the morphology of the attractor reconstructed from the EEG signals. Changes in the testee emotional state are evaluated using a fuzzy estimation of the three characteristics of the attractors reconstructed EEG signals. The emotions monitoring results are presented in the form of a matrix with increments of the attractors characteristics assessments, defined by the additional index scale that allows for each element of a fuzzy set to generate a numerical evaluation using the index term and the membership function.
Keywords: model of emotion, emotion recognition, attractor, fuzzy sets.
@article{FSSC_2016_11_1_a3,
     author = {N. N. Filatova and K. V. Sidorov},
     title = {Interpretation of the emotion characteristics through the analysis of attractors reconstructed on {EEG} signals},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {57--76},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a3/}
}
TY  - JOUR
AU  - N. N. Filatova
AU  - K. V. Sidorov
TI  - Interpretation of the emotion characteristics through the analysis of attractors reconstructed on EEG signals
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2016
SP  - 57
EP  - 76
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a3/
LA  - ru
ID  - FSSC_2016_11_1_a3
ER  - 
%0 Journal Article
%A N. N. Filatova
%A K. V. Sidorov
%T Interpretation of the emotion characteristics through the analysis of attractors reconstructed on EEG signals
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2016
%P 57-76
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a3/
%G ru
%F FSSC_2016_11_1_a3
N. N. Filatova; K. V. Sidorov. Interpretation of the emotion characteristics through the analysis of attractors reconstructed on EEG signals. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 11 (2016) no. 1, pp. 57-76. http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a3/

[1] Lebedeva N. N., Karimova E. D., “The acoustic characteristics of the speech signal as an indicator of the human functional state”, Advances in Physiological Sciences, 45:1 (2014), 57–95 (in Russian)

[2] Koelstra S., Affective and implicit tagging using facial expressions and electroencephalography, PhD Thesis, Queen Mary University of London, London, 2012, 167 pp.

[3] Rozaliev V. L., Bobkov A. S., Orlova Yu. A., Zaboleeva-Zotova A. V., Dmitriev A. S., “Detailed analysis of postures and gestures for the identification of human emotional reactions”, World Applied Sciences Journal, 24:24, Spec. Issue Information Technologies in Modern Industry, Education Society (2013), 151–158 | DOI

[4] Rangayyan R. M., Biomedical Signal Analysis, 2nd Edition, Wiley-IEEE Press, New York, United States, 2015, 720 pp. | DOI

[5] Malineckij G. G., Potapov A. B., Modern Problems of Nonlinear Dynamics, Editorial URSS Publ., Moscow, 2000, 336 pp. (in Russian)

[6] Anishhenko V. S., Introduction to Nonlinear Dynamics, Handbook, LKI Publ., Moscow, 2008, 224 pp. (in Russian)

[7] Starchenko I. B., Perervenko J. S., Borisova O. S., Momot T. V., “Nonlinear dynamics methods for biomedical applications”, Izvestiya SFedU. Engineering Sciences, 2010, no. 9 (110), 42–51 (in Russian)

[8] Abhang P. A., Gawali B. W., “Correlation of EEG images and speech signals for emotion analysis”, British Journal of Applied Science Technology, 10:5 (2015), 1–13 | DOI

[9] Lokannavar S., Lahane P., Gangurde A., Chidre P., “Emotion recognition using EEG signals”, International Journal of Advanced Research in Computer and Communication Engineering, 4:5 (2015), 54–56 | DOI

[10] Lan Z., Sourina O., Wang L., Liu Y., “Real-time EEG-based emotion monitoring using stable features”, The Visual Computer, 32:3 (2016), 347–358 | DOI

[11] Sidorov K. V., Filatova N. N., “Biotechnical system for the analysis of human emotions”, Proceedings of the Congress on Intelligent Systems and Information Technologies, “IS'14”, v. 2, 2014, 238–244 (in Russian)

[12] Takens F., “Detecting strange attractors in turbulence”, Dynamical Systems and Turbulence: Proceedings of a Symposium Held at the University of Warwick 1979/80, Lecture Notes in Mathematics, 898, eds. D. Rand and L.-S. Young, Springer Berlin Heidelberg, Berlin, Germany, 1981, 366–381 | DOI | MR

[13] Fraser A. M., “Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria”, Physica D: Nonlinear Phenomena, 34:3 (1989), 391–404 | DOI | MR | Zbl

[14] Fraiser A. M., Swinney H. L., “Independent coordinates for strange attractors from mutual information”, Physical Review A, 33:2 (1986), 1134–1140 | DOI | MR

[15] Gorshkov V. A., Kasatkin S. A., Identification of Time Series of Aviation Events by Methods and Algorithms for Nonlinear Dynamics, Blank Design Publ., Moscow, 2008, 208 pp. (in Russian)

[16] Grassberger P., Procaccia I., “Measuring the strangeness of strange attractors”, Physica D: Nonlinear Phenomena, 9:1-2 (1983), 189–208 | DOI | MR | Zbl

[17] Eckmann J.-P., Ruelle D., “Ergodic theory of chaos and strange attractors”, Reviews of Modern Physics, 57:3 (1985), 617–656 | DOI | MR | Zbl

[18] Mekler A. A., The Software Package for the Analysis of Electroencephalograms using Dynamic Chaos Theory, PhD Thesis, Saint-Petersburg, 2006, 168 pp. (in Russian)

[19] Theiler J., “Spurious dimension from correlation algorithms applied to limited time series data”, Physical Review A, 34:3 (1986), 2427–2432 | DOI

[20] Perervenko Ju. S., Investigation of Invariants of Non-Linear Dynamics of Speech and the Principles of Construction of the Audio Analysis System of Psychophysiological State, PhD Thesis, Taganrog, 2009, 175 pp. (in Russian)

[21] Borisova O. S., Research and Analysis of Electroencephalographic Data by Native Methods of Nonlinear Dynamics, PhD Thesis, Taganrog, 2010, 163 pp. (in Russian)

[22] Lebedeva N. N., Karimova E. D., Kazimirova E. A., “Speech signal analysis in human functional state research”, Biomedical Radioelectronics, 2015, no. 2, 3–12 (in Russian)

[23] Sidorov K. V., Filatova N. N., “Application of nonlinear dynamics methods for joy emotion recognition in speech”, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 5 (81), 110–114 (in Russian)

[24] Filatova N. N., Sidorov K. V., Terekhin S. A., “A software package for interpretation of nonverbal information by analyzing speech patterns or electroencephalogram”, Programmnye produkty i sistemy [Software Systems], 2015, no. 3 (111), 22–27 (in Russian) | DOI

[25] Filatova N. N., Sidorov K. V., Iliasov L. V., “Automated system for analyzing and interpreting nonverbal information”, International Journal of Applied Engineering Research, 10:24 (2015), 45741–45749

[26] Filatova N. N., Sidorov K. V., Terekhin S. A., Vinogradov G. P., “The system for the study of the dynamics of human emotional response using fuzzy trends”, Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry”, IITI'16, Advances in Intelligent Systems and Computing, 451, Part III, eds. A. Abraham, S. Kovalev, V. Tarassov, V. Snasel, Springer International Publishing, Cham, Switzerland, 2016, 175–184 | DOI

[27] Lapshina T. N., Psychophysiological Diagnosis of Human Emotions based on EEG Indices, PhD Thesis, Moscow, 2007, 190 pp. (in Russian)

[28] Filatova N. N., Milovidov A. A., “The program complex for linguistic interpretation of graphic dependencies with fuzzy coordinates of central points”, Programmnye produkty i sistemy [Software Systems], 2011, no. 3, 110–114 (in Russian)

[29] Filatova N. N., Milovidov A. A., “Analysis and interpretation of audiograms in the space of fuzzy attributes”, Nechetkie Sistemy i Myagkie Vychisleniya [Fuzzy Systems and Soft Computing], 6:1 (2011), 55–66 (in Russian)