Classification methods of system condition based on soft computing technology
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 11 (2016) no. 1, pp. 33-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classification methods of system condition are presented. Proposed method are based on soft computing technology. Possibilities of the approach are demonstrated on model examples.
Keywords: classification, condition of systems, theory of possibility, fuzzy sets, fuzzy (possibilistic) variable, fuzzy random variable, linguistic variable, soft computing, aggregation function.
@article{FSSC_2016_11_1_a2,
     author = {V. I. Arefiev and M. O. Petrov and A. B. Talalaev and S. V. Sorokin and A. V. Yazenin},
     title = {Classification methods of system condition based on soft computing technology},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {33--56},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a2/}
}
TY  - JOUR
AU  - V. I. Arefiev
AU  - M. O. Petrov
AU  - A. B. Talalaev
AU  - S. V. Sorokin
AU  - A. V. Yazenin
TI  - Classification methods of system condition based on soft computing technology
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2016
SP  - 33
EP  - 56
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a2/
LA  - ru
ID  - FSSC_2016_11_1_a2
ER  - 
%0 Journal Article
%A V. I. Arefiev
%A M. O. Petrov
%A A. B. Talalaev
%A S. V. Sorokin
%A A. V. Yazenin
%T Classification methods of system condition based on soft computing technology
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2016
%P 33-56
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a2/
%G ru
%F FSSC_2016_11_1_a2
V. I. Arefiev; M. O. Petrov; A. B. Talalaev; S. V. Sorokin; A. V. Yazenin. Classification methods of system condition based on soft computing technology. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 11 (2016) no. 1, pp. 33-56. http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a2/

[1] Patrik E., Fundamentals of Pattern Recognition Theory, Moscow, 1980 (in Russian)

[2] Birger I. A., Technical Diagnostics, Moscow, 1978 (in Russian)

[3] Nahmias S., “Fuzzy variables”, Fuzzy sets and systems, 1 (1978), 97–110 | DOI | MR | Zbl

[4] Batyrshin I. Z., Nedosekin A. O., Stetsko A. A., Tarasov V. B., Yazenin A. V., Yarushkina N. G., Fuzzy Hybrid Systems. Theory and Practice, eds. N. G. Yarushkina, Nauka Publ., Moscow, 2007 (in Russian)

[5] Pegat A., Fuzzy Modeling and Control, Moscow, 2013 (in Russian)

[6] Takagi T., Sugeno M., “Fuzzy identification of systems and its applications to modeling and control”, IEEE Transactions on Systems, Man, and Cybernetics, SMC-15:1 (1985), 116–132 | DOI

[7] Beliakov G., Pradera A., Calvo T., Aggregation Functions: A Guide for Practioners, Springer-Verlag, Berlin Heidelberg, 2007, 361 pp.

[8] Saaty T. L., “Interactions in hierarchical systems”, Technical Cybernetics, 1979, no. 1, 68–84 (in Russian)

[9] Sorokina I. V., Sorokin S. V., “On parameters estimation for multidimensional possibility distributions”, Nechetkie sistemy i myagkie vychisleniya [Fuzzy Systems and Soft Computing], 8:2 (2013), 101–113 (in Russian) | Zbl

[10] Raul Rojas, Neural Networks. A systematic introduction, Springer-Verlag, Berlin, 1996 | Zbl

[11] Yoshua B., Simard P., Frasconi P., “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 5:2 (1994), 157–166 | DOI

[12] Maaten L. J. P., “Learning a parametric embedding by preserving local structure”, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS 2009 (April 16-18, 2009, Clearwater Beach, Florida USA), v. 5, 384–391

[13] Salakhutdinov R., Hinton G., “An efficient learning procedure for deep Boltzmann machines”, Neural Computation, 24:8 (2012), 1967–2006 | DOI | MR | Zbl

[14] Hinton G. E., “Training products of experts by minimizing contrastive divergence”, Neural Computation, 14:8 (2002), 1771–1800 | DOI | MR | Zbl

[15] Welling M., Rosen-Zvi M., Hinton G., “Exponential family harmoniums with an application to information retrieval”, Advances in Neural Information Processing Systems, 17 (2004), 1481–1488

[16] Hinton G. E., Salakhutdinov R. R., “Reducing the dimensionality of data with neural networks”, Science, 313(5786) (2006), 504–507 | DOI | MR | Zbl

[17] Zadeh L. A., The Concept of Linguistic Variable and its Application to Approximate Decision Making, Mir Publ., Moscow, 1976, 165 pp. (in Russian) | MR

[18] Kosko B., “Fuzzy systems as universal approximators”, IEEE Transactions on Computers, 43:11 (1994), 1329–1333 | DOI | Zbl

[19] Zadeh L. A., “Fuzzy sets as a basis for a theory of possibility”, Fuzzy Sets and Systems, 1 (1978), 3–28 | DOI | MR | Zbl

[20] Yazenin A. V., Wagenknecht M., Possibilistic Optimization, Brandenburgische Technische Universitat, Germany, Cottbus, 1996

[21] Khokhlov M. Yu., Yazenin A. V., “Calculation of numerical characteristics of fuzzy random variables”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2003, no. 1, 39–43 (in Russian) | MR

[22] Feng Y., Hu L., Shu H., “The variance and covariance of fuzzy random variables”, Fuzzy Sets and Systems, 120 (2001), 487–497 | DOI | MR | Zbl

[23] Dubois D., Prade H., Possibility Theory. Applications to Knowledge Representation in Computer Science, Moscow, 1990 (in Russian) | MR