Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FSSC_2016_11_1_a1, author = {I. S. Soldatenko}, title = {On solution method for possibilistic optimization problem of one class with parameters characterized by quasiconcave upper semicontinuous strictly unimodal distribution functions}, journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a}, pages = {19--32}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a1/} }
TY - JOUR AU - I. S. Soldatenko TI - On solution method for possibilistic optimization problem of one class with parameters characterized by quasiconcave upper semicontinuous strictly unimodal distribution functions JO - Nečetkie sistemy i mâgkie vyčisleniâ PY - 2016 SP - 19 EP - 32 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a1/ LA - ru ID - FSSC_2016_11_1_a1 ER -
%0 Journal Article %A I. S. Soldatenko %T On solution method for possibilistic optimization problem of one class with parameters characterized by quasiconcave upper semicontinuous strictly unimodal distribution functions %J Nečetkie sistemy i mâgkie vyčisleniâ %D 2016 %P 19-32 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a1/ %G ru %F FSSC_2016_11_1_a1
I. S. Soldatenko. On solution method for possibilistic optimization problem of one class with parameters characterized by quasiconcave upper semicontinuous strictly unimodal distribution functions. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 11 (2016) no. 1, pp. 19-32. http://geodesic.mathdoc.fr/item/FSSC_2016_11_1_a1/
[1] Yazenin A. V., “On the problem of possibilistic optimization”, Fuzzy Sets and Systems, 81 (1996), 133–140 | DOI | MR | Zbl
[2] Yazenin A. V., Wagenknecht M., Possibilistic optimization, Brandenburgische Technische Universitat, Cottbus, Germany, 1996
[3] Soldatenko I. S., Yazenin A. V., “Possibilistic optimization problems with mutually T-related parameters: Comparative study”, Journal of Computer and Systems Sciences International, 47:5 (2008), 752–763 | DOI | MR | Zbl
[4] Yazenin A., Soldatenko I., “Possibilistic optimization tasks with mutually T-related parameters: solution methods and comparative analysis”, Fuzzy Optimization: Recent Advances and Applications, Studies in Fuzziness and Soft Computing, 254, eds. W. A. Lodwick, J. Kacprzyk, Springer, Berlin–Heidelberg, 2010, 163–192 | DOI | MR | Zbl
[5] Bellman R. E., Zadeh L. A., “Decision making in a fuzzy environment”, Management Science, 17 (1970), 141–162 | DOI | MR
[6] Luhandjula M. K., “On possibilistic linear programming”, Fuzzy Sets and Systems, 18 (1986), 15–30 | DOI | MR | Zbl
[7] Luhandjula M. K., “Fuzzy optimization: an appraisal”, Fuzzy Sets and Systems, 30 (1989), 257–282 | DOI | MR | Zbl
[8] Dyubua D., Prad A., Theory of Possibilities, “Radio i svyaz” Publ., Moscow, 1990 (in Russian) | MR
[9] Nguyen H. T., Walker E. A., A first cours in fuzzy logic, CRC Press, 1997 | MR
[10] Nahmias S., “Fuzzy variables”, Fuzzy Sets and Systems, 1 (1978), 97–110 | DOI | MR | Zbl
[11] Dubois D., Prade H., “Fuzzy numbers: an overview”, Analysis of Fuzzy Information, v. 2, eds. J. Bezdek, CRC-Press, Boca Raton, 1988, 3–39 | MR
[12] Dubois D., Prade H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980 | MR | Zbl
[13] Schweizer B., Sklar A., Probabilistic metric spaces, North Holland, New York, 1983 | MR | Zbl
[14] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper I: basic analytical and algebraic properties”, Fuzzy Sets and Systems, 143:1 (2004), 5–26 | DOI | MR | Zbl
[15] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper II: general constructions and parameterized families”, Fuzzy Sets and Systems, 145:3 (2004), 411–438 | DOI | MR | Zbl
[16] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper III: continuous t-norms”, Fuzzy Sets and Systems, 145:3 (2004), 439–454 | DOI | MR | Zbl
[17] Mesiar R., “A note to the $T$-sum of $L-R$ fuzzy numbers”, Fuzzy Sets and Systems, 79 (1996), 259–261 | DOI | MR | Zbl
[18] Klement E. P., Mesiar R., Pap E., “A characterization of the ordering of continous $t$-norms”, Fuzzy Sets and Systems, 86 (1997), 189–195 | DOI | MR | Zbl
[19] Markov$\rm\acute a$-Stup$\rm\breve n$anov$\rm\acute a$ A., “A note to the addition of fuzzy numbers based on a continous Archimedean $T$-norm”, Fuzzy Sets and Systems, 91 (1997), 253–258 | DOI | MR | Zbl
[20] Mesiar R., “Computation of $L-R$-fuzzy numbers”, Proc. of 5th International Workshop on Current Issues in Fuzzy Technologies (Trento, Italy, 1995), 165–176
[21] Mesiar R., “Triangular-norm-based addition of fuzzy intervals”, Fuzzy Sets and Systems, 91 (1997), 231–237 | DOI | MR | Zbl
[22] Mesiar R., “Shape preserving additions of fuzzy intervals”, Fuzzy Sets and Systems, 86 (1997), 73–78 | DOI | MR | Zbl
[23] Rao M. B., Rashed A., “Some comments on fuzzy variables”, Fuzzy Sets and Systems, 6 (1996), 285–292 | DOI | MR
[24] Soldatenko I. S., “On a weighted sum of mutually Tw-related fuzzy values”, Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2007, no. 4, 63–77 (in Russian)
[25] Yazenin A.V., “Fuzzy and Stochastic Programming”, Fuzzy Sets and Systems, 22 (1987), 171–180 | DOI | MR | Zbl
[26] Soldatenko I. S., “On genetic algorithm for solving possibilistic optimization problem with mutually Tw-related parameters”, Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2008, no. 8, 25–36 (in Russian)
[27] Soldatenko I. S., Yazenin A. V., “Possibilistic optimization problems with mutually t-related parameters”, Proceedings of 2008 Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2008 (New York City, USA, May 19-22, 2008), 1–5 | DOI
[28] Gordeev R. N., Yazenin A. V., “A method for solving a problem of possibilistic programming”, Journal of Computer and Systems Sciences International, 45:3 (2006), 442–449 | DOI | MR | Zbl