Method of calculating the coefficients of semantic proximity between scientific articles
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 10 (2015) no. 2, pp. 195-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes the method of calculating the coefficients of semantic proximity between scientific articles based on the use of semantic analysis of the text elements, as well as analysis of the structural elements of a scientific article. The scientific article is presented as a fuzzy set whose elements are the terms where each term is assigned a grade of membership, which characterizes the degree of its importance for this document. The described technique offers a new way to calculate the weight coefficients of the terms in the text. It also introduces a metric measuring the distance between scientific articles, which takes into account implicit semantic links between the compared documents. To obtain semantic characteristics of the terms in the study Wiktionary is used as a thesaurus.
Keywords: semantic analysis, a measure of proximity documents Wiktionary, the semantic net of a document, fuzzy sets.
@article{FSSC_2015_10_2_a3,
     author = {A. V. Volkov},
     title = {Method of calculating the coefficients of semantic proximity between scientific articles},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {195--207},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2015_10_2_a3/}
}
TY  - JOUR
AU  - A. V. Volkov
TI  - Method of calculating the coefficients of semantic proximity between scientific articles
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2015
SP  - 195
EP  - 207
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2015_10_2_a3/
LA  - ru
ID  - FSSC_2015_10_2_a3
ER  - 
%0 Journal Article
%A A. V. Volkov
%T Method of calculating the coefficients of semantic proximity between scientific articles
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2015
%P 195-207
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2015_10_2_a3/
%G ru
%F FSSC_2015_10_2_a3
A. V. Volkov. Method of calculating the coefficients of semantic proximity between scientific articles. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 10 (2015) no. 2, pp. 195-207. http://geodesic.mathdoc.fr/item/FSSC_2015_10_2_a3/

[1] Volkov A. V., “Kompyuternaya obrabotka teksta na estestvennom yazyke”, Materialy XI mezhdunarodnoi nauchno-prakticheskoi konferentsii “Partnerstvo biznesa i obrazovaniya v innovatsionnom razvitii regiona”, MESI, Tver, 2012, 71–76

[2] Zakharova I. S., Matematicheskaya model semanticheskogo poiska na osnove ontologicheskogo podkhoda, Dis. ... kand. fiz.-mat. nauk, Chelyabinsk, 2010, 120 pp.

[3] Sparck J. K., “A statistical interpretation of term specificity and its application in retrieval”, Journal of Documentation, 1972, no. 28, 11–21 | DOI

[4] Ageev M. S., Metody avtomaticheskoi rubrikatsii tekstov, osnovannye na mashinnom obuchenii i znaniyakh ekspertov, Dis. ... kand. fiz.-mat. nauk, M., 2004, 136 pp.

[5] Manning K. D., Ragkhavan P., Shyuttse Kh., Vvedenie v informatsionnyi poisk, Per. s angl., OOO “I.D. Vilyams”, M., 2011, 528 pp.

[6] Vikislovar http://ru.wiktionary.org

[7] Chanyshev O. G., “Metod avtomaticheskoi klasterizatsii tekstov na osnove analiza peresechenii klasterov dominant”, Informatsionnye tekhnologii, 2010, no. 11, 2–7

[8] Kiselev M. V., Pivovarov V. S., Shmulevich M. M., “Metod klasterizatsii tekstov, uchityvayuschii sovmestnuyu vstrechaemost klyuchevykh terminov, i ego primenenie k analizu tematicheskoi struktury novostnogo potoka, a takzhe ee dinamiki”, Internet-matematika 2005. Avtomaticheskaya obrabotka veb-dannykh, Yandeks, M., 2005, 412–435

[9] Tekhnologiya Tomita–Parser (Yandeks), https://tech.yandex.ru/tomita/

[10] Ageev A. M., Kuralenok I., Nekrestyanov I., “Ofitsialnye metriki ROMIP'2010”, Rossiiskii seminar po otsenke metodov informatsionnogo poiska (Kazan, 2010) http://romip.ru/romip2010/20\textunderscore appendix\textunderscore a\textunderscore metrics.pdf