Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FSSC_2015_10_1_a5, author = {A. Toropova and A.V. Suvorova and A. L. Tulupyev}, title = {Model for socially significant behavior rate estimate: consistency diagnostics}, journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a}, pages = {93--107}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FSSC_2015_10_1_a5/} }
TY - JOUR AU - A. Toropova AU - A.V. Suvorova AU - A. L. Tulupyev TI - Model for socially significant behavior rate estimate: consistency diagnostics JO - Nečetkie sistemy i mâgkie vyčisleniâ PY - 2015 SP - 93 EP - 107 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FSSC_2015_10_1_a5/ LA - ru ID - FSSC_2015_10_1_a5 ER -
%0 Journal Article %A A. Toropova %A A.V. Suvorova %A A. L. Tulupyev %T Model for socially significant behavior rate estimate: consistency diagnostics %J Nečetkie sistemy i mâgkie vyčisleniâ %D 2015 %P 93-107 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FSSC_2015_10_1_a5/ %G ru %F FSSC_2015_10_1_a5
A. Toropova; A.V. Suvorova; A. L. Tulupyev. Model for socially significant behavior rate estimate: consistency diagnostics. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 10 (2015) no. 1, pp. 93-107. http://geodesic.mathdoc.fr/item/FSSC_2015_10_1_a5/
[1] Aghaarabi E., Aminravan F., Sadiq R., Hoorfar M., Rodriguez M. J., Najjaran H., “Comparative study of fuzzy evidential reasoning and fuzzy rule-based approaches: an illustration for water quality assessment in distribution networks”, Stochastic environmental research and risk assessment, 28:3 (2014), 655-679 | DOI
[2] Qi H. S., Alzaabi R. N., Wood A. S., Jani M., “A fuzzy criticality assessment system of process equipment for optimised maintenance management”, International Journal of Computer Integrated Manufacturing, 28:1 (2015), 112-125 | DOI
[3] Chen S.-M., Lin T. E., Lee L.-W., “Group decision making using incomplete fuzzy preference relations based on the additive consistency and the order consistency”, Information Sciences, 259 (2014), 1-15 | DOI | MR | Zbl
[4] Xu Y., Ma F., Tao F., Wang H., “Some methods to deal with unacceptable incomplete 2-tuple fuzzy linguistic preference relations in group decision making”, Knowledge-Based Systems, 56 (2014), 179-190 | DOI
[5] Finayev V. I., Ignatyev V. V., Control systems based on the combination of classical and fuzzy object models, Fizmatlit Publ., Moscow, 2013, 156 pp. (in Russian)
[6] Kaid V. A. A., “Assessment of consistency of expert information for decision-making models”, Bulletin of the Southern Federal University. Technical Science, 2014, no. 5(154), 194-202 (in Russian)
[7] Beshelev S. D., Gurvich F. G., Mathematical and statistical methods of expert assessments, Statistica Publ., Moscow, 1980, 263 pp. (in Russian)
[8] Alonso S., Chiclana F., Herrera F., Herrera-Viedma E., Alcal-Fdez J., Porcel C., “A consistency-based procedure to estimate missing pairwise preference values”, International Journal of Intelligent Systems, 2008, no. 23, 155-175 | DOI | Zbl
[9] Tsyganok V. V., Kadenko S. V., “On sufficiency of the consistency level of group ordinal estimates”, Journal of Automation and Information Sciences, 42:8 (2010), 42-47 | DOI
[10] Xiong G., Shi D., Zhu L., Duan X., “A new approach to fault diagnosis of power systems using fuzzy reasoning spiking neural P systems”, Mathematical Problems in Engineering, 2013 (2013), 815352 | DOI | MR | Zbl
[11] Zhu Y., Huo L., Lu J., “Bayesian networks-based approach for power systems fault diagnosis”, IEEE Transactions on Power Delivery, 21:2 (2006), 634-639 | DOI
[12] Mansour M. M., Wahab M. A. A., Soliman W. M., “Bayesian networks for fault diagnosis of a large power station and its transmission lines”, Electric Power Components and Systems, 40:8 (2012), 845-863 | DOI
[13] Helouet L., Marchand H., Genest B., Gazagnaire T., “Diagnosis from scenarios”, Discrete event dynamic systems-theory and applications, 24:4 (2014), 353-415 | DOI | Zbl
[14] Kabiri P., Ghorbani A. A., “Research on intrusion detection and response: a survey”, International Journal of Network Security, 2005, no. 1(2), 84-102
[15] Suvorova A. V., “Modelling of socially significant behavior on ultralow incomplete set of observations”, Information-Measuring and Control Systems, 11:9 (2013), 34-37 (in Russian)
[16] Suvorova A. V., “Hybrid models of estimates of parameters for socially significant behavior on ultralow incomplete set of observations”, SPIIRAS Proceedings, 2013, no. 1(24), 116-134 (in Russian)
[17] Suvorova A. V., Tulupyev A. L., Pashenko A. E., Tulupyeva T. V., Krasnoselskikh T. V., “Analysis of granular data and knowledge in research problems of socially significant behaviors”, Computer Tools in Education, 2010, no. 4, 30-38 (in Russian)
[18] Suvorova A. V., Tulupyev A. L., Sirotkin A. V., “Bayesian belief networks in problems of estimating the intensity of risk behavior”, Nechetkie Sistemy i Myagkie Vychisleniya [Fuzzy Systems and Soft Computing], 2015 (in Russian)
[19] Tulupyeva T. V., Pashenko A. E., Tulupyev A. L., Krasnoselskikh T. V., Kazakova O. S., Models of HIV risk behaviors in the context of psychological defense and other adaptive styles, Nauka Publ., SPb, 2008, 140 pp. (in Russian)
[20] Pashenko A. E., Tulupyev A. L., Tulupyeva T. V., Krasnoselskikh T. V., Sokolovskiy E. V., “Indirect assessment of the likelihood of HIV infection based on data on the latest episodes of risky behavior”, Health Care of the Russian Federation, 2010, no. 2, 32-35 (in Russian)
[21] Tulupyeva T. V., Pashenko A. E., Tulupyev A. L., Golyanich V. M., “Models of HIV risk behaviors in the context of psychological protection and adaptation”, Bulletin of St. Petersburg State University. Series 10: Applied Mathematics. Informatics. Management Processes, 2010, no. 1, 95-104 (in Russian)
[22] Tulupyev A. L., Nikolenko S. I., Sirotkin A. V., Bayesian network: the logical-probabilistic approach, Nauka, SPb, 2006, 607 pp. (in Russian)
[23] Tulupyev A. L., Sirotkin A. V., Nikolenko S. I., Bayesian belief networks: logic-probabilistic inference in the acyclic directed graphs, Saint-Petersburg State University Publ., SPb, 2009, 400 pp. (in Russian)
[24] Pearl J., Causality: Models, Reasoning, and Inference, Cambridge University Press, Cambridge, 2000, 400 pp. | MR | Zbl
[25] GeNIe, , Decisions systems laboratory, School of Information Sciences, University of Pittsburg http://genie.sis.pitt.edu