Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FSSC_2015_10_1_a2, author = {I. Z. Batyrshin}, title = {Measures of association of plausible events}, journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a}, pages = {23--34}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FSSC_2015_10_1_a2/} }
I. Z. Batyrshin. Measures of association of plausible events. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 10 (2015) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/FSSC_2015_10_1_a2/
[1] Batyrshin I. Z., Basic operations of fuzzy logic and their generalizations, «Otechestvo» Publ., Kazan, 2001, 100 pp. (in Russian)
[2] Batyrshin I., “On the structure of involutive, contracting and expanding negations”, Fuzzy Sets and Systems, 139:3 (2003), 661–672 | DOI | MR | Zbl
[3] Batyrshin I., Herrera-Avelar R., Sheremetov L., Suarez R., “Moving approximations in time series data mining”, Proceedings of International Conference on Fuzzy Sets and Soft Computing in Economic and Finance, FSSCEF 2004 (Saint-Petersburg, Russia, 2004), v. 1, 62–72
[4] Batyrshin I., Herrera-Avelar R., Sheremetov L., Panova A., “Moving approximation transform and local trend associations in time series data bases”, Perception-based Data Mining and Decision Making in Economics and Finance, Studies in Computational Intelligence, 36, Springer, 2007, 55–83 | DOI | Zbl
[5] Batyrshin I., Sheremetov L., Velasco-Hernandez J. X., “On axiomatic definition of time series shape association measures”, Workshop on Operations Research and Data Mining, ORADM, 2012, 117–127
[6] Batyrshin I., “Constructing time series shape association measures: Minkowski distance and data standardization”, Proceedings of BRICS CCI 2013, arXiv: 1311.1958v3
[7] Batyrshin I., “Association measures and aggregation functions”, Advances in Soft Computing and Its Applications, Lecture Notes in Computer Science, 8266, Springer, Berlin Heidelberg, 2013, 194–203 | DOI
[8] Batyrshin I., “Association measures on sets with involution and similarity measure”, Proceedings of 4th World Conference on Soft Computing (Berkeley, California, 2014)
[9] Batyrshin I. Z., “Theoretical bases of the methods of construction of association measures in intelligent data analysis”, Chetyrnadtsataya natsionalnaya konferentsiya po iskusstvennomu intellektu s mezhdunarodnym uchastiem, KII-2014 (Kazan, 2014), v. 2, 243–251
[10] Beliakov G., Pradera A., Calvo T., Aggregation functions: A guide for practitioners, Springer Publishing Company, Incorporated, 2008
[11] Fodor J., Roubens M., Fuzzy preference modelling and multi-criteria decision support, Dordrecht, Kluwer, 1994
[12] Grabisch M., Marichal J. -L., Mesiar R., Pap E., Aggregation Functions, Cambridge University Press, Cambridge, 2009 | MR | Zbl
[13] Han J., Kamber M., Data mining: concepts and techniques, 2nd ed., Morgan Kaufmann, Amsterdam, 2006 | Zbl
[14] Klement E. P., Mesiar R., Pap E., Triangular norms, Kluwer, Dordrecht, 2000 | MR | Zbl
[15] Murthy C. A., Pal S. K., Majumder D. Dutta, “Correlation between two fuzzy membership functions”, Fuzzy Sets and Systems, 17:1 (1985), 23–38 | DOI | MR | Zbl
[16] Ovchinnikov S., Roubens M., “On strict preference relations”, Fuzzy Sets and Systems, 43:3 (1991), 319–326 | DOI | MR | Zbl
[17] Wilcox R. R., Fundamentals of Modern Statistical Methods, 2nd ed., Springer, New York, 2010 | MR | Zbl
[18] Zadeh L. A., “Fuzzy sets”, Information and Control, 8:3 (1965), 338–353 | DOI | MR | Zbl