Fuzzy Sets
Nečetkie sistemy i mâgkie vyčisleniâ, Tome 10 (2015) no. 1, pp. 7-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint.
@article{FSSC_2015_10_1_a1,
     author = {L. A. Zadeh},
     title = {Fuzzy {Sets}},
     journal = {Ne\v{c}etkie sistemy i m\^agkie vy\v{c}isleni\^a},
     pages = {7--22},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FSSC_2015_10_1_a1/}
}
TY  - JOUR
AU  - L. A. Zadeh
TI  - Fuzzy Sets
JO  - Nečetkie sistemy i mâgkie vyčisleniâ
PY  - 2015
SP  - 7
EP  - 22
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FSSC_2015_10_1_a1/
LA  - ru
ID  - FSSC_2015_10_1_a1
ER  - 
%0 Journal Article
%A L. A. Zadeh
%T Fuzzy Sets
%J Nečetkie sistemy i mâgkie vyčisleniâ
%D 2015
%P 7-22
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FSSC_2015_10_1_a1/
%G ru
%F FSSC_2015_10_1_a1
L. A. Zadeh. Fuzzy Sets. Nečetkie sistemy i mâgkie vyčisleniâ, Tome 10 (2015) no. 1, pp. 7-22. http://geodesic.mathdoc.fr/item/FSSC_2015_10_1_a1/

[1] Birkhoff G., Lattice Theory, American Mathematical Society Colloquium Publications, 25, New York, 1940 | DOI | MR | Zbl

[2] Halmos P. R., Naive Set Theory, Van Nostrand, New York, 1960 | MR | Zbl

[3] Kleene S. C., Introduction to Metamathematics, University Series in Higher Mathematics, Van Nostrand, New York, 1952 | MR