Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2024_25_1_a8, author = {O. V. Markova}, title = {Classification of commutative subalgebras of length $n-2$ in the algebra of $n\times n$ matrices over algebraically closed fields}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {133--159}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a8/} }
TY - JOUR AU - O. V. Markova TI - Classification of commutative subalgebras of length $n-2$ in the algebra of $n\times n$ matrices over algebraically closed fields JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2024 SP - 133 EP - 159 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a8/ LA - ru ID - FPM_2024_25_1_a8 ER -
%0 Journal Article %A O. V. Markova %T Classification of commutative subalgebras of length $n-2$ in the algebra of $n\times n$ matrices over algebraically closed fields %J Fundamentalʹnaâ i prikladnaâ matematika %D 2024 %P 133-159 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a8/ %G ru %F FPM_2024_25_1_a8
O. V. Markova. Classification of commutative subalgebras of length $n-2$ in the algebra of $n\times n$ matrices over algebraically closed fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 133-159. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a8/
[1] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR
[2] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR
[3] Maltsev A. I., Osnovy lineinoi algebry, Nauka, M., 1975 | MR
[4] Markova O. V., “Verkhnyaya otsenka dliny kommutativnykh algebr”, Matem. sb., 200:12 (2009), 41–62 | DOI | Zbl
[5] Markova O. V., “Kharakterizatsiya kommutativnykh matrichnykh podalgebr maksimalnoi dliny nad proizvolnym polem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009, no. 5, 53–55 | Zbl
[6] Markova O. V., “O nekotorykh svoistvakh funktsii dliny”, Matem. zametki, 87:1 (2010), 83–91 | DOI | MR | Zbl
[7] Markova O. V., “Klassifikatsiya matrichnykh podalgebr dliny $1$”, Fundament. i prikl. matem., 17:1 (2012), 169–188 | Zbl
[8] Markova O. V., “Funktsiya dliny i matrichnye algebry”, Fundament. i prikl. matem., 17:6 (2012), 65–173
[9] Markova O. V., “Kommutativnye nilpotentnye podalgebry indeksa nilpotentnosti $n-1$ v algebre matrits poryadka $n$”, Zap. nauchn. sem. POMI, 453, 2016, 219–242
[10] Markova O. V., “Funktsiya dliny i odnovremennaya triangulizuemost par matrits”, Zap. nauchn. sem. POMI, 514, 2022, 126–137
[11] Markova O. V., “Kommutativnye matrichnye algebry, porozhdennye tsiklicheskimi matritsami”, Zap. nauchn. sem. POMI, 524, 2023, 112–124
[12] Markova O. V., Novochadov D. Yu., “Sistemy porozhdayuschikh polnoi matrichnoi algebry, soderzhaschie tsiklicheskie matritsy”, Zap. nauchn. sem. POMI, 504, 2021, 157–171
[13] On-Line Encyclopedia of Integer Sequences, OEIS
[14] Pavlov I. A., “O kommutativnykh nilpotentnykh algebrakh matrits”, DAN BSSR, 11:10 (1967), 870–872 | Zbl
[15] Pirs R., Assotsiativnye algebry, Mir, M., 1986
[16] Suprunenko D. A., Tyshkevich R. I., Perestanovochnye matritsy, URSS, M., 2003
[17] Endryus G., Teoriya razbienii, Nauka, M., 1982
[18] Al'pin Yu. A., Ikramov Kh. D., “Reducibility theorems for pairs of matrices as rational criteria”, Linear Algebra Appl., 313 (2000), 155–161 | DOI | MR | Zbl
[19] Brown W. C., Call F. W., “Maximal commutative subalgebras of $n\times n$ matrices”, Commun. Algebra, 21:12 (1993), 4439–4460 | DOI | MR | Zbl
[20] Courter R. C., “The dimension of maximal commutative subalgebras of $K_n$”, Duke Math. J., 32 (1965), 225–232 | DOI | MR | Zbl
[21] Dolinar G., Guterman A., Kuzma B., Oblak P., “Extremal matrix centralizers”, Linear Algebra Appl., 438:7 (2013), 2904–2910 | DOI | MR | Zbl
[22] Gerstenhaber M., “On dominance and varieties of commuting matrices”, Ann. Math., 73:2 (1961), 324–348 | DOI | MR | Zbl
[23] Gustafson W. H., “On maximal commutative algebras of linear transformations”, J. Algebra, 42:2 (1976), 557–563 | DOI | MR | Zbl
[24] Guterman A. E., Laffey T., Markova O. V., Šmigoc H., “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR | Zbl
[25] Guterman A. E., Markova O. V., “Commutative matrix subalgebras and length function”, Linear Algebra Appl., 430 (2009), 1790–1805 | DOI | MR | Zbl
[26] Guterman A. E., Markova O. V., Mehrmann V., “Lengths of quasi-commutative pairs of matrices”, Linear Algebra Appl., 498 (2016), 450–470 | DOI | MR | Zbl
[27] Jacobson N., “Schur's theorems on commutative matrices”, Bull. Amer. Math. Soc., 50 (1944), 431–436 | DOI | MR | Zbl
[28] Laffey T. J., “The minimal dimension of maximal commutative subalgebras of full matrix algebras”, Linear Algebra Appl., 71 (1985), 199–212 | DOI | MR | Zbl
[29] Laffey T. J., Lazarus S., “Two-generated commutative matrix subalgebras”, Linear Algebra Appl., 147 (1991), 249–273 | DOI | MR | Zbl
[30] Longstaff W. E., “Burnside's theorem: irreducible pairs of transformations”, Linear Algebra Appl., 382 (2004), 247–269 | DOI | MR | Zbl
[31] Longstaff W. E., “On minimal sets of $(0,1)$-matrices whose pairwise products form a basis for $\mathrm{M}a_n(\mathbb{F})$”, Bull. Austral. Math. Soc., 98:3 (2018), 402–413 | DOI | MR | Zbl
[32] Longstaff W. E., “Irreducible families of complex matrices containing a rank-one matrix”, Bull. Austral. Math. Soc., 102:2 (2020), 226–236 | DOI | MR | Zbl
[33] Pappacena C. J., “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl
[34] Paz A., “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl
[35] Schur I., “Zur Theorie der vertauschbaren Matrizen”, J. Reine Angew. Math., 130 (1905), 66–76 | DOI | MR
[36] Shitov Ya., “An improved bound for the lengths of matrix algebras”, Algebra Number Theory, 13:6 (2019), 1501–1507 | DOI | MR | Zbl
[37] Song Y., “A construction of maximal commutative subalgebra of matrix algebras”, J. Korean Math. Soc., 40:2 (2003), 241–250 | DOI | MR | Zbl
[38] Spencer A. J. M., Rivlin R. S., “The theory of matrix polynomials and its applications to the mechanics of isotropic continua”, Arch. Ration. Mech. Anal., 2 (1959), 309–336 | DOI | MR | Zbl
[39] Spencer A. J. M., Rivlin R. S., “Further results in the theory of matrix polynomials”, Arch. Ration. Mech. Anal., 4 (1960), 214–230 | DOI | MR | Zbl
[40] Wadsworth A., “The algebra generated by two commuting matrices”, Linear Multilinear Algebra, 27 (1990), 159–162 | DOI | MR | Zbl