Classification of commutative subalgebras of length $n-2$ in the algebra of $n\times n$ matrices over algebraically closed fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 133-159
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, commutative subalgebras of length $n-2$ in the algebra of matrices of order $n$ over algebraically closed fields are classified up to similarity. In other terms, commutative algebras having length one less than the maximum value are described. It is shown that for an arbitrary fixed order of matrices, the number of pairwise non-conjugate algebras of the indicated type is finite. Using the number of partitions of natural numbers, a formula is obtained for the number of different algebras as a function of the order of the matrices.
@article{FPM_2024_25_1_a8,
author = {O. V. Markova},
title = {Classification of commutative subalgebras of length $n-2$ in the algebra of $n\times n$ matrices over algebraically closed fields},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {133--159},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a8/}
}
TY - JOUR AU - O. V. Markova TI - Classification of commutative subalgebras of length $n-2$ in the algebra of $n\times n$ matrices over algebraically closed fields JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2024 SP - 133 EP - 159 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a8/ LA - ru ID - FPM_2024_25_1_a8 ER -
%0 Journal Article %A O. V. Markova %T Classification of commutative subalgebras of length $n-2$ in the algebra of $n\times n$ matrices over algebraically closed fields %J Fundamentalʹnaâ i prikladnaâ matematika %D 2024 %P 133-159 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a8/ %G ru %F FPM_2024_25_1_a8
O. V. Markova. Classification of commutative subalgebras of length $n-2$ in the algebra of $n\times n$ matrices over algebraically closed fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 133-159. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a8/