On linear transformations preserving cyclicity index of nonnegative matrices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 67-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cyclicity index of a strongly connected directed graph is the greatest common divisor of all its directed cycles and the cyclicity index of an arbitrary directed graph is the least common multiple of the cyclicity indices of all its maximal strongly connected subgraphs. The cyclicity index of a matrix is equal to the cyclicity index of its critical subgraph, namely, the subgraph of the adjacent graph consisting of all cycles with the maximal average weight. In this paper, we consider surjective linear transformations of non-negative and integer non-negative matrices preserving the cyclicity index. We obtain a complete characterization of such maps and prove that they are automatically injective.
@article{FPM_2024_25_1_a3,
     author = {A. V. Vlasov and A. E. Guterman and E. M. Kreines},
     title = {On linear transformations preserving cyclicity index of nonnegative matrices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--82},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a3/}
}
TY  - JOUR
AU  - A. V. Vlasov
AU  - A. E. Guterman
AU  - E. M. Kreines
TI  - On linear transformations preserving cyclicity index of nonnegative matrices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 67
EP  - 82
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a3/
LA  - ru
ID  - FPM_2024_25_1_a3
ER  - 
%0 Journal Article
%A A. V. Vlasov
%A A. E. Guterman
%A E. M. Kreines
%T On linear transformations preserving cyclicity index of nonnegative matrices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 67-82
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a3/
%G ru
%F FPM_2024_25_1_a3
A. V. Vlasov; A. E. Guterman; E. M. Kreines. On linear transformations preserving cyclicity index of nonnegative matrices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 67-82. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a3/

[1] Vlasov A. V., Guterman A. E., Kreines E. M., “Lineinye otobrazheniya, sokhranyayuschie minimalnye znacheniya indeksa tsiklichnosti tropicheskikh matrits”, Zap. nauch. sem. POMI, 524, 2023, 18–35

[2] Beasley L. B., Guterman A. E., “The characterization of operators preserving primitivity for matrix $k$-tuples”, Linear Algebra Appl., 430 (2000), 1762–1777 | DOI | MR

[3] Beasley L. B., Pullman N. J., “Linear operators that strongly preserve primitivity”, Linear and Multilinear Algebra, 25 (1989), 205–213 | DOI | MR | Zbl

[4] Dieudonné D. J., “Sur une généralisation du groupe orthogonal á quatre variables”, Arch. Math., 1 (1949), 282–287 | DOI | MR | Zbl

[5] Frobenius G., “Über die Darstellung der endlichen Gruppen durch lineare Substitutionen”, Sitzungsber. Königl. Preuss. Akad. Wiss., Berlin, 1897, 994–1015

[6] Gavalec M., “Linear matrix period in max-plus algebra”, Linear Algebra Appl., 307 (2000), 167–182 | DOI | MR | Zbl

[7] Guterman A., Kreines E., Thomassen C., “Linear transformations of tropical matrices preserving the cyclicity index”, Special Matrices, 9 (2021), 112–118 | DOI | MR | Zbl

[8] Guterman A., Kreines E., Vlasov A., “Non-surjective linear transformations of tropical matrices preserving the cyclicity index”, Kybernetika, 58:5 (2022), 691–707 | MR | Zbl

[9] Heidergott B., Olsder G. J., van der Woude J., Max Plus at Work, Princeton Ser. Appl. Math., Princeton, 2006 | MR | Zbl

[10] Kennedy-Cochran-Patrick A., Merlet G., Nowak T., Sergeev S., “New bounds on the periodicity transient of the powers of a tropical matrix: using cyclicity and factor rank”, Linear Algebra Appl., 611 (2021), 279–309 | DOI | MR | Zbl

[11] Li C.-K., Tsing N. K., “Linear preserver problems: A brief introduction and some special techniques”, Linear Algebra Appl., 162–164 (1992), 217–235 | MR | Zbl

[12] Molnár L., Selected preserver problems on algebraic structures of linear operators and on function spaces, Lect. Notes Math., 1895, Springer, 2007 | MR | Zbl

[13] Pierce S. et al., “A survey of linear preserver problems”, Linear Multilinear Algebra, 33 (1992), 1–119 | DOI | MR | Zbl

[14] Schur I., “Einige Bemerkungen zur Determinantentheorie”, Sitzungsber. Königl. Preuss. Akad. Wiss., Berlin, 1925, 454–463

[15] Šemrl P., “Maps on matrix spaces”, Linear Algebra Appl., 413 (2006), 364–393 | DOI | MR