Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2024_25_1_a3, author = {A. V. Vlasov and A. E. Guterman and E. M. Kreines}, title = {On linear transformations preserving cyclicity index of nonnegative matrices}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {67--82}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a3/} }
TY - JOUR AU - A. V. Vlasov AU - A. E. Guterman AU - E. M. Kreines TI - On linear transformations preserving cyclicity index of nonnegative matrices JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2024 SP - 67 EP - 82 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a3/ LA - ru ID - FPM_2024_25_1_a3 ER -
%0 Journal Article %A A. V. Vlasov %A A. E. Guterman %A E. M. Kreines %T On linear transformations preserving cyclicity index of nonnegative matrices %J Fundamentalʹnaâ i prikladnaâ matematika %D 2024 %P 67-82 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a3/ %G ru %F FPM_2024_25_1_a3
A. V. Vlasov; A. E. Guterman; E. M. Kreines. On linear transformations preserving cyclicity index of nonnegative matrices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 67-82. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a3/
[1] Vlasov A. V., Guterman A. E., Kreines E. M., “Lineinye otobrazheniya, sokhranyayuschie minimalnye znacheniya indeksa tsiklichnosti tropicheskikh matrits”, Zap. nauch. sem. POMI, 524, 2023, 18–35
[2] Beasley L. B., Guterman A. E., “The characterization of operators preserving primitivity for matrix $k$-tuples”, Linear Algebra Appl., 430 (2000), 1762–1777 | DOI | MR
[3] Beasley L. B., Pullman N. J., “Linear operators that strongly preserve primitivity”, Linear and Multilinear Algebra, 25 (1989), 205–213 | DOI | MR | Zbl
[4] Dieudonné D. J., “Sur une généralisation du groupe orthogonal á quatre variables”, Arch. Math., 1 (1949), 282–287 | DOI | MR | Zbl
[5] Frobenius G., “Über die Darstellung der endlichen Gruppen durch lineare Substitutionen”, Sitzungsber. Königl. Preuss. Akad. Wiss., Berlin, 1897, 994–1015
[6] Gavalec M., “Linear matrix period in max-plus algebra”, Linear Algebra Appl., 307 (2000), 167–182 | DOI | MR | Zbl
[7] Guterman A., Kreines E., Thomassen C., “Linear transformations of tropical matrices preserving the cyclicity index”, Special Matrices, 9 (2021), 112–118 | DOI | MR | Zbl
[8] Guterman A., Kreines E., Vlasov A., “Non-surjective linear transformations of tropical matrices preserving the cyclicity index”, Kybernetika, 58:5 (2022), 691–707 | MR | Zbl
[9] Heidergott B., Olsder G. J., van der Woude J., Max Plus at Work, Princeton Ser. Appl. Math., Princeton, 2006 | MR | Zbl
[10] Kennedy-Cochran-Patrick A., Merlet G., Nowak T., Sergeev S., “New bounds on the periodicity transient of the powers of a tropical matrix: using cyclicity and factor rank”, Linear Algebra Appl., 611 (2021), 279–309 | DOI | MR | Zbl
[11] Li C.-K., Tsing N. K., “Linear preserver problems: A brief introduction and some special techniques”, Linear Algebra Appl., 162–164 (1992), 217–235 | MR | Zbl
[12] Molnár L., Selected preserver problems on algebraic structures of linear operators and on function spaces, Lect. Notes Math., 1895, Springer, 2007 | MR | Zbl
[13] Pierce S. et al., “A survey of linear preserver problems”, Linear Multilinear Algebra, 33 (1992), 1–119 | DOI | MR | Zbl
[14] Schur I., “Einige Bemerkungen zur Determinantentheorie”, Sitzungsber. Königl. Preuss. Akad. Wiss., Berlin, 1925, 454–463
[15] Šemrl P., “Maps on matrix spaces”, Linear Algebra Appl., 413 (2006), 364–393 | DOI | MR