Weighted posets and the enriched monomial basis of QSym
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 53-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

Gessel's fundamental and Stembridge's peak functions are the generating functions for (enriched) $P$-partitions on labelled chains. They are also the bases of two significant subalgebras of formal power series, respectively, the ring of quasisymmetric functions (QSym) and the algebra of peaks. Hsiao introduced the monomial peak functions, a basis of the algebra of peaks indexed by odd integer compositions whose relation to peak functions mimics the one between the monomial and fundamental bases of QSym. We show that the extension of monomial peaks to any composition is a new basis of QSym and generalise Hsiao's results including the product rule. To this end, we introduce a weighted variant of posets and study their generating functions.
@article{FPM_2024_25_1_a2,
     author = {E. A. Vassilieva and D. Grinberg},
     title = {Weighted posets and the enriched monomial basis of {QSym}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a2/}
}
TY  - JOUR
AU  - E. A. Vassilieva
AU  - D. Grinberg
TI  - Weighted posets and the enriched monomial basis of QSym
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 53
EP  - 65
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a2/
LA  - ru
ID  - FPM_2024_25_1_a2
ER  - 
%0 Journal Article
%A E. A. Vassilieva
%A D. Grinberg
%T Weighted posets and the enriched monomial basis of QSym
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 53-65
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a2/
%G ru
%F FPM_2024_25_1_a2
E. A. Vassilieva; D. Grinberg. Weighted posets and the enriched monomial basis of QSym. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a2/

[1] Aguiar M., Bergeron N., Sottile F., “Combinatorial Hopf algebras and generalized Dehn-Sommerville relations”, Compositio Math., 142:1 (2006), 1–30 | DOI | MR | Zbl

[2] Gessel I., “Multipartite $P$-partitions and inner products of skew Schur functions”, Contemp. Math., 34 (1984), 289–317 | DOI | MR

[3] Grinberg D., “Shuffle-compatible permutation statistics. II. The exterior peak set”, Electron. J. Combin., 25:4 (2018), #P4.17 | DOI | MR | Zbl

[4] Grinberg D., The Eta-Basis of QSym, 2020 http://www.cip.ifi.lmu.de/g̃rinberg/algebra/etabasis.pdf

[5] Grinberg D., Reiner V., Hopf Algebras in Combinatorics, 2020 , arXiv: http://www.cip.ifi.lmu.de/g̃rinberg/algebra/HopfComb-sols.pdf1409.8356v7

[6] Guo L., Yu H., Zhao J., “Rota-Baxter algebras and left weak composition quasi-symmetric functions”, The Ramanujan J., 44:3 (2017), 567–596 | DOI | MR | Zbl

[7] Hsiao S. K., Structure of the Peak Hopf Algebra of Quasisymmetric Functions, 2007

[8] Khesin A. B., Zhang A. L., On Quasisymmetric Functions with Two Bordering Variables, 2020, arXiv: 2007.11953v2

[9] Stanley R., Enumerative Combinatorics, v. 2, Cambridge Univ. Press, 2001 | MR | Zbl

[10] Stembridge J., “Enriched $P$-partitions”, Trans. Amer. Math. Soc., 349:2 (1997), 763–788 | DOI | MR | Zbl