Rees congruence algebras in classes of unars and algebras with operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 219-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, some kinds of algebras associated with the concept of a Rees congruence is considered. A congruence $\theta$ of a universal algebra $A$ is called a Rees congruence if there exists a subalgebra $B$ of the algebra $A$ such that $\theta$ is the set-theoretical union of $B^2$ and the identity relation on $A$. An algebra $A$ is called a Rees congruence algebra if any congruence of the algebra $A$ is a Rees congruence. A non-one-element algebra is called a Rees simple algebra if all its Rees congruences are trivial. An algebra with one unary operation is called a unar. An algebra with operators is a universal algebra with an additional system of operators, i.e., of unary operations acting as endomorphisms relative to operations from the basic signature. The description of Rees congruence algebras and of Rees simple algebras in the class of unars is obtained. A necessary condition to be a Rees congruence algebra for algebras $\langle A, \Omega \cup \{f\} \rangle$ with operator $f$ and arbitrary basic signature $\Omega$ is found. It is shown that this necessary condition is not a sufficient condition in the general case. The description of Rees congruence algebras in some subclasses of the class of algebras with one operator and with a ternary basic operation is obtained.
@article{FPM_2024_25_1_a12,
     author = {V. L. Usoltsev},
     title = {Rees congruence algebras in classes of unars and algebras with operators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {219--235},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a12/}
}
TY  - JOUR
AU  - V. L. Usoltsev
TI  - Rees congruence algebras in classes of unars and algebras with operators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 219
EP  - 235
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a12/
LA  - ru
ID  - FPM_2024_25_1_a12
ER  - 
%0 Journal Article
%A V. L. Usoltsev
%T Rees congruence algebras in classes of unars and algebras with operators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 219-235
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a12/
%G ru
%F FPM_2024_25_1_a12
V. L. Usoltsev. Rees congruence algebras in classes of unars and algebras with operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 219-235. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a12/

[1] Egorova D. P., “Struktura kongruentsii unarnoi algebry”, Mezhvuz. nauch. sb., Uporyadochennye mnozhestva i reshetki, 5, Izd-vo Saratovsk. un-ta, Saratov, 1978, 11–44

[2] Kartashov V. K., “Kvazimnogoobraziya unarov”, Mat. zametki, 27:1 (1980), 7–20 | MR | Zbl

[3] Kartashov V. K., “Ob unarakh s maltsevskoi operatsiei”, Univ. algebra i ee prilozheniya, Tez. dokl. mezhdunar. sem., posv. pamyati prof. Mosk. gos. un-ta L. A. Skornyakova, Peremena, Volgograd, 1999, 31–32

[4] Lata A. N., “O kongruents-kogerentnykh algebrakh Risa i algebrakh s operatorom”, Chebyshevskii sb., 18:2 (62) (2017), 154–172 | DOI | MR | Zbl

[5] Usoltsev V. L., “O podpryamo nerazlozhimykh unarakh s maltsevskoi operatsiei”, Izv. Volgogradsk. gos. ped. un-ta, ser. «Est. i fiz.-mat. nauki», 2005, no. 4 (13), 17–24

[6] Usoltsev V. L., “Unary s ternarnoi maltsevskoi operatsiei”, UMN, 63:5 (2008), 201–202 | DOI | MR | Zbl

[7] Usoltsev V. L., “Svobodnye algebry mnogoobraziya unarov s maltsevskoi operatsiei $p$, zadannogo tozhdestvom $p(x,y,x)=y$”, Chebyshevskii sb., 12:2 (38) (2011), 127–134 | MR | Zbl

[8] Usoltsev V.L., “O polinomialno polnykh i abelevykh unarakh s maltsevskoi operatsiei”, Uch. zap. Orlovsk. gos. un-ta, 6(50):2 (2012), 229–236

[9] Usoltsev V. L., “O gamiltonovom zamykanii na klasse algebr s odnim operatorom”, Chebyshevskii sb., 16:4 (56) (2015), 284–302 | MR | Zbl

[10] Usoltsev V. L., “Algebry Risa i kongruents-algebry Risa v odnom klasse algebr s operatorom i osnovnoi operatsiei pochti edinoglasiya”, Chebyshevskii sb., 17:4 (60) (2016), 157–166 | DOI | MR | Zbl

[11] Usoltsev V. L., “O risovskom zamykanii v nekotorykh klassakh algebr s operatorom”, Chebyshevskii sb., 22:2 (2021), 271–287 | DOI | MR | Zbl

[12] Usoltsev V. L., “Podpryamaya nerazlozhimost i atomy reshetok kongruentsii algebr s operatorom i simmetricheskoi osnovnoi operatsiei”, Chebyshevskii sb., 22:2 (2021), 257–270 | DOI | MR | Zbl

[13] Baker K. A., Pixley A., “Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems”, Math. Z., 143 (1975), 165–174 | DOI | MR | Zbl

[14] Berman J., “On the congruence lattices of unary algebras”, Proc. Amer. Math. Soc., 36 (1972), 34–38 | DOI | MR | Zbl

[15] Chajda I., Duda J., “Rees algebras and their varieties”, Publ. Math. Debrecen, 32 (1985), 17–22 | DOI | MR | Zbl

[16] Chajda I., Eigenthaler G., Langer H., Congruence Classes in Universal Algebra, Heldermann, Vienna, 2003 | MR | Zbl

[17] Jakubíková-Studenovská D., Pócs J., Monounary Algebras, Pavol Jozef Šafárik Univ., Košice, 2009 | Zbl

[18] Johnson J., Seifert R. L., A survey of multi-unary algebras: Mimeographed seminar notes, Berkeley, U. C, 1967

[19] Lavers T., Solomon A., “The endomorphisms of a finite chain form a Rees congruence semigroup”, Semigroup Forum, 59:2 (1999), 167–170 | DOI | MR | Zbl

[20] Rees D., “On semigroups”, Proc. Cambridge Philos. Soc., 36 (1940), 387–400 | DOI | MR | Zbl

[21] Skornyakov L. A., “Unars”, Colloq. Math. Soc. J. Bolyai, 29 (1982), 735–743 | MR | Zbl

[22] Šešelja B., Tepavčević A., “On a characterization of Rees varieties”, Tatra Mountains Math. Publ., 5 (1995), 61–69 | MR

[23] Tichy R. F., “The Rees congruences in universal algebras”, Publ. Inst. Math. (Beograd), 29 (1981), 229–239 | MR | Zbl

[24] Usoltsev V. L., “Simple and pseudosimple algebras with operators”, J. Math. Sci., 164:2 (2010), 281–293 | DOI | MR | Zbl

[25] Wenzel G. H., “Subdirect irreducibility and equational compactness in unary algebras $\langle A; f \rangle$”, Arch. Math. (Basel), 21 (1970), 256–264 | DOI | MR | Zbl