Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2024_25_1_a1, author = {E. A. Blagoveshchenskaya and O. V. Markova}, title = {Matrix structures in the form of finite direct sums and chains}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {31--51}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a1/} }
TY - JOUR AU - E. A. Blagoveshchenskaya AU - O. V. Markova TI - Matrix structures in the form of finite direct sums and chains JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2024 SP - 31 EP - 51 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a1/ LA - ru ID - FPM_2024_25_1_a1 ER -
E. A. Blagoveshchenskaya; O. V. Markova. Matrix structures in the form of finite direct sums and chains. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 31-51. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a1/
[1] Blagoveschenskaya E., “Avtomorfizmy kolets endomorfizmov blochno-zhestkikh pochti vpolne razlozhimykh grupp”, Fundament. i prikl. matem., 10:2 (2004), 23–50
[2] Blagoveschenskaya E., “Pochti vpolne razlozhimye gruppy s primarnym regulyatornym faktorom i ikh koltsa endomorfizmov”, Fundament. i prikl. matem., 12:2 (2006), 17–38
[3] Blagoveschenskaya E., Pochti vpolne razlozhimye gruppy i ikh koltsa endomorfizmov, Matematika v politekhnicheskom universitete, SPb., 2009
[4] Guterman A. E., Markova O. V., “Dlina gruppovykh algebr grupp nebolshogo razmera”, Zap. nauchn. sem. POMI, 472, 2018, 76–87
[5] Guterman A. E., Markova O. V., Sochnev S. D., “Algebra polumagicheskikh matrits i ee dlina”, Zap. nauchn. sem. POMI, 419, 2013, 52–76
[6] Krylov P., Mikhalev A., Tuganbaev A., Svyazi abelevykh grupp i ikh kolets endomorfizmov, Tomskii gos. un-t, Tomsk, 2002
[7] Markova O. V., “O dline algebry verkhnetreugolnykh matrits”, UMN, 60:5 (365) (2005), 177–178 | DOI | MR | Zbl
[8] Markova O. V., “Verkhnyaya otsenka dliny kommutativnykh algebr”, Mat. sb., 200:12 (2009), 41–62 | DOI | Zbl
[9] Markova O. V., “Funktsiya dliny i matrichnye algebry”, Fundament. i prikl. matem., 17:6 (2012), 65–173
[10] Markova O. V., “Funktsiya dliny i odnovremennaya triangulizuemost par matrits”, Zap. nauchn. sem. POMI, 514, 2022, 126–137
[11] Markova O. V., “Kommutativnye matrichnye algebry, porozhdennye tsiklicheskimi matritsami”, Zap. nauchn. sem. POMI, 524, 2023, 112–124
[12] Markova O. V., Novochadov D. Yu., “Sistemy porozhdayuschikh polnoi matrichnoi algebry, soderzhaschie tsiklicheskie matritsy”, Zap. nauchn. sem. POMI, 504, 2021, 157–171
[13] Pirs R., Assotsiativnye algebry, Mir, M., 1986
[14] Fuks L., Beskonechnye abelevy gruppy, v. 1, 2, Mir, M., 1977
[15] Blagoveshchenskaya E., “Direct decompositions of almost completely decomposable Abelian groups”, Abelian Groups and Modules, Lect. Notes Pure Appl. Math. Ser., 182, 1996, 163–179 | MR | Zbl
[16] Blagoveshchenskaya E., “Classification of a class of almost completely decomposable groups”, Rings, Modules, Algebras and Abelian Groups, Lect. Notes Pure Appl. Math. Ser., 236, 2002, 45–54 | MR
[17] Blagoveshchenskaya E., “Dualities between almost completely decomposable groups and their endomorphism rings”, J. Math. Sci., 131:5 (2005), 5948–5961 | DOI | MR | Zbl
[18] Blagoveshchenskaya E., Ivanov G., Schultz P., “The Baer-Kaplansky theorem for almost completely decomposable groups”, Contemp. Math., 273, 2001, 85–93 | DOI | MR | Zbl
[19] Blagoveshchenskaya E., Mader A., “Decompositions of almost completely decomposable Abelian groups”, Contemp. Math., 171, 1994, 21–36 | DOI | MR | Zbl
[20] Blagoveshchenskaya E., Mikhalev A., “Matrix representations of endomorphism rings for torsion-free Abelian groups”, Vestn. St. Petersburg Univ.: Math., 56:3 (2023), 341–349 | DOI | MR | Zbl
[21] Blagoveshchenskaya E., Mikulik I., “Butler group direct decomposition classification with applications to parallel algorithms”, Adv. Syst. Sci. Appl., 23:3 (2023), 153–163 | MR
[22] Blagoveshchenskaya E., Strüngmann L., “Algorithms in direct decompositions of torsion-free Abelian groups”, J. Math. Sci., 275:5 (2023), 541–547 | DOI | MR | Zbl
[23] Blagoveshchenskaya E., Mikhalev A., “Influence of the Baer-Kaplansky theorem on the development of the theory of groups, rings, and modules”, J. Math. Sci., 269:5 (2023), 632–696 | DOI | MR | Zbl
[24] Dolinar G., Guterman A., Kuzma B., Oblak P., “Extremal matrix centralizers”, Linear Algebra Appl., 438:7 (2013), 2904–2910 | DOI | MR | Zbl
[25] Guterman A. E., Khrystik M. A., Markova O. V., “On the lengths of group algebras of finite Abelian groups in the semi-simple case”, J. Algebra Appl., 2022, 2250140–2250153 | DOI | MR
[26] Guterman A. E., Laffey T., Markova O. V., Šmigoc H., “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR | Zbl
[27] Guterman A. E., Markova O. V., “The length of the group algebra of the group $Q_8$”, New Trends in Algebras and Combinatorics, World Scientific, 2020, 105–133 | DOI | MR | Zbl
[28] Guterman A. E., Markova O. V., Mehrmann V., “Lengths of quasi-commutative pairs of matrices”, Linear Algebra Appl., 498 (2016), 450–470 | DOI | MR | Zbl
[29] Horn R., Johnson C., Matrix Analysis, Cambridge Univ. Press, 2013 | MR | Zbl
[30] Khrystik M. A., Markova O. V., “On the length of the group algebra of the dihedral group in the semi-simple case”, Commun. Algebra, 50:5 (2022), 2223–2232 | DOI | MR | Zbl
[31] Laffey T. J., “Simultaneous reduction of sets of matrices under similarity”, Linear Algebra Appl., 84 (1986), 123–138 | DOI | MR | Zbl
[32] Lambrou M. S., Longstaff W. E., “On the lengths of pairs of complex matrices of size six”, Bull. Aust. Math. Soc., 80 (2009), 177–201 | DOI | MR | Zbl
[33] Longstaff W. E., “Irreducible families of complex matrices containing a rank-one matrix”, Bull. Aust. Math. Soc., 102:2 (2020), 226–236 | DOI | MR | Zbl
[34] Longstaff W. E., “Burnside's theorem: irreducible pairs of transformations”, Linear Algebra Appl., 382 (2004), 247–269 | DOI | MR | Zbl
[35] Longstaff W. E., Niemeyer A. C., Panaia O., “On the lengths of pairs of complex matrices of size at most five”, Bull. Aust. Math. Soc., 73:3 (2006), 461–472 | DOI | MR | Zbl
[36] Longstaff W. E., Rosenthal P., “On the lengths of irreducible pairs of complex matrices”, Proc. Amer. Math. Soc., 139:11 (2011), 3769–3777 | DOI | MR | Zbl
[37] Mader A., Almost Completely Decomposable Abelian Groups, Algebra, Logic and Applications, 13, Gordon and Breach, Amsterdam, 1999 | MR
[38] Pappacena C. J., “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl
[39] Paz A., “An application of the Cayley-Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl
[40] Shitov Ya., “An improved bound for the lengths of matrix algebras”, Algebra Number Theory, 13:6 (2019), 1501–1507 | DOI | MR | Zbl
[41] Spencer A. J. M., Rivlin R. S., “The theory of matrix polynomials and its applications to the mechanics of isotropic continua”, Arch. Ration. Mech. Anal., 2 (1959), 309–336 | DOI | MR | Zbl
[42] Spencer A. J. M., Rivlin R. S., “Further results in the theory of matrix polynomials”, Arch. Ration. Mech. Anal., 4 (1960), 214–230 | DOI | MR | Zbl