Belyi function decompositions for the icosahedron of genus~$4$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 3-30

Voir la notice de l'article provenant de la source Math-Net.Ru

The icosahedron $I_4$ of genus $4$ is a dessin d'enfant embedded in Bring's curve $\mathcal{B}$. The dessin $I_4$ is related in some sense to a regular icosahedron $I_0$ embedded in the complex Riemann sphere. In particular, decompositions of Belyi functions $\beta_{I_0}\colon \mathbb{CP}^1 \rightarrow \mathbb{CP}^1$ and $\beta_{I_4}\colon \mathcal{B} \rightarrow \mathbb{CP}^1$ for $I_0$ and $I_4$ have the same lattice. The diagram of $\beta_{I_0}$ decompositions is already known. In the present paper we find $\beta_{I_4}$ decompositions. Note that $\beta_{I_0}$ decomposes into rational functions on $\mathbb{C}P^1$, while in case of $\beta_{I_4}$ we deal with maps between different algebraic curves.
@article{FPM_2024_25_1_a0,
     author = {N. Ya. Amburg and M. A. Kovaleva},
     title = {Belyi function decompositions for the icosahedron of genus~$4$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--30},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a0/}
}
TY  - JOUR
AU  - N. Ya. Amburg
AU  - M. A. Kovaleva
TI  - Belyi function decompositions for the icosahedron of genus~$4$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 3
EP  - 30
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a0/
LA  - ru
ID  - FPM_2024_25_1_a0
ER  - 
%0 Journal Article
%A N. Ya. Amburg
%A M. A. Kovaleva
%T Belyi function decompositions for the icosahedron of genus~$4$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 3-30
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a0/
%G ru
%F FPM_2024_25_1_a0
N. Ya. Amburg; M. A. Kovaleva. Belyi function decompositions for the icosahedron of genus~$4$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 3-30. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a0/