Belyi function decompositions for the icosahedron of genus~$4$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 3-30
Voir la notice de l'article provenant de la source Math-Net.Ru
The icosahedron $I_4$ of genus $4$ is a dessin d'enfant embedded in Bring's curve $\mathcal{B}$. The dessin $I_4$ is related in some sense to a regular icosahedron $I_0$ embedded in the complex Riemann sphere. In particular, decompositions of Belyi functions $\beta_{I_0}\colon \mathbb{CP}^1 \rightarrow \mathbb{CP}^1$ and $\beta_{I_4}\colon \mathcal{B} \rightarrow \mathbb{CP}^1$ for $I_0$ and $I_4$ have the same lattice. The diagram of $\beta_{I_0}$ decompositions is already known. In the present paper we find $\beta_{I_4}$ decompositions. Note that $\beta_{I_0}$ decomposes into rational functions on $\mathbb{C}P^1$, while in case of $\beta_{I_4}$ we deal with maps between different algebraic curves.
@article{FPM_2024_25_1_a0,
author = {N. Ya. Amburg and M. A. Kovaleva},
title = {Belyi function decompositions for the icosahedron of genus~$4$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--30},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a0/}
}
TY - JOUR AU - N. Ya. Amburg AU - M. A. Kovaleva TI - Belyi function decompositions for the icosahedron of genus~$4$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2024 SP - 3 EP - 30 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a0/ LA - ru ID - FPM_2024_25_1_a0 ER -
N. Ya. Amburg; M. A. Kovaleva. Belyi function decompositions for the icosahedron of genus~$4$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 3-30. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a0/