Belyi function decompositions for the icosahedron of genus~$4$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 3-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The icosahedron $I_4$ of genus $4$ is a dessin d'enfant embedded in Bring's curve $\mathcal{B}$. The dessin $I_4$ is related in some sense to a regular icosahedron $I_0$ embedded in the complex Riemann sphere. In particular, decompositions of Belyi functions $\beta_{I_0}\colon \mathbb{CP}^1 \rightarrow \mathbb{CP}^1$ and $\beta_{I_4}\colon \mathcal{B} \rightarrow \mathbb{CP}^1$ for $I_0$ and $I_4$ have the same lattice. The diagram of $\beta_{I_0}$ decompositions is already known. In the present paper we find $\beta_{I_4}$ decompositions. Note that $\beta_{I_0}$ decomposes into rational functions on $\mathbb{C}P^1$, while in case of $\beta_{I_4}$ we deal with maps between different algebraic curves.
@article{FPM_2024_25_1_a0,
     author = {N. Ya. Amburg and M. A. Kovaleva},
     title = {Belyi function decompositions for the icosahedron of genus~$4$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--30},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a0/}
}
TY  - JOUR
AU  - N. Ya. Amburg
AU  - M. A. Kovaleva
TI  - Belyi function decompositions for the icosahedron of genus~$4$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2024
SP  - 3
EP  - 30
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a0/
LA  - ru
ID  - FPM_2024_25_1_a0
ER  - 
%0 Journal Article
%A N. Ya. Amburg
%A M. A. Kovaleva
%T Belyi function decompositions for the icosahedron of genus~$4$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2024
%P 3-30
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a0/
%G ru
%F FPM_2024_25_1_a0
N. Ya. Amburg; M. A. Kovaleva. Belyi function decompositions for the icosahedron of genus~$4$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 25 (2024) no. 1, pp. 3-30. http://geodesic.mathdoc.fr/item/FPM_2024_25_1_a0/

[1] Kazaryan M., Lando S., Prasolov V., Algebraicheskie krivye. Po napravleniyu k prostranstvam modulei, MTsNMO, M., 2019

[2] Lando S. K., Zvonkin A. K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010

[3] Amburg N. Ya., Kreines E. M., Belyi pairs of the cell decomposition of $\mathcal{L}(\overline{M^{\mathbb{R}}_{0.5}})$, 2023, arXiv: 2306.06282

[4] Braden H. W., Disney-Hogg L., Bring's curve: Old and New, 2022, arXiv: 2208.13692 | MR

[5] Farkas H., Kra I., Riemann Surfaces, Springer, Berlin, 1980 | MR | Zbl

[6] Gallier J., Xu D., A Guide to the Classification Theorem for Compact Surfaces, Springer, Berlin, 2013 | MR | Zbl

[7] Grothendieck A., “Sketch of a programme (Esquisse d'un programme)”, Geometric Galois Actions, v. 1, Lond. Math. Soc. Lect. Note Ser., 242, Around Grothendieck's «Esquisse d'un programme», ed. Schneps L., Cambridge Univ. Press, Cambridge, 1997, 243–283 | MR | Zbl

[8] Klein F., Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Dover, New York, 2003 | MR

[9] Magot N., Zvonkin A. K., “Belyi functions for Archimedean solids”, Discrete Math., 217:1-3 (2000), 249–271 | DOI | MR | Zbl

[10] Miranda R., Algebraic Curves and Riemann Surfaces, Amer. Math. Soc., 1995 | MR | Zbl

[11] Riera G., Rodríguez R. E., “The period matrix of Bring's curve”, Pacific J. Math., 154:1 (1992), 179–200 | DOI | MR | Zbl

[12] Ritt J. F., “Prime and composite polynomials”, Trans. Amer. Math. Soc., 23:1 (1922), 51–66 | DOI | MR

[13] Shabat G. B., “Calculating and drawing Belyi pairs”, J. Math. Sci., 226 (2017), 667–693 | DOI | MR | Zbl

[14] Sijslin J., Dessins d'enfants: Master's Thesis, Univ. of Groningen

[15] The L-functions and modular forms database, https://www.lmfdb.org/EllipticCurve/Q/50/a/

[16] Weber M., “Kepler's small stellated dodecahedron as a Riemann surface”, Pacific J. Math., 220 (2005), 167–182 | DOI | MR | Zbl

[17] Zvonkin A. K., “Functional composition is a generalized symmetry”, Symmetry: Culture and Science, 2010, 333–368