New multivariate dimension polynomials of inversive difference field extensions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 143-169

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new type of reduction of inversive difference polynomials associated with a partition of the basic set of automorphisms $\sigma$; we use a generalization of the concept of effective order of a difference polynomial. Then we develop the corresponding method of characteristic sets and apply it to prove the existence and obtain a method of computation of multivariate dimension polynomials of a new type that describe the transcendence degrees of intermediate fields of finitely generated inversive difference field extensions obtained by adjoining transforms of the generators whose orders with respect to the components of the partition of $\sigma$ are bounded by two sequences of natural numbers. We show that such dimension polynomials carry essentially more invariants (that is, characteristics of the extension that do not depend on the set of its difference generators) than standard (univariate) difference dimension polynomials. We also show how the obtained results can be applied to the equivalence problem for systems of algebraic difference equations.
@article{FPM_2023_24_4_a8,
     author = {A. Levin},
     title = {New multivariate dimension polynomials of inversive difference field extensions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {143--169},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a8/}
}
TY  - JOUR
AU  - A. Levin
TI  - New multivariate dimension polynomials of inversive difference field extensions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 143
EP  - 169
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a8/
LA  - ru
ID  - FPM_2023_24_4_a8
ER  - 
%0 Journal Article
%A A. Levin
%T New multivariate dimension polynomials of inversive difference field extensions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 143-169
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a8/
%G ru
%F FPM_2023_24_4_a8
A. Levin. New multivariate dimension polynomials of inversive difference field extensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 143-169. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a8/