New multivariate dimension polynomials of inversive difference field extensions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 143-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new type of reduction of inversive difference polynomials associated with a partition of the basic set of automorphisms $\sigma$; we use a generalization of the concept of effective order of a difference polynomial. Then we develop the corresponding method of characteristic sets and apply it to prove the existence and obtain a method of computation of multivariate dimension polynomials of a new type that describe the transcendence degrees of intermediate fields of finitely generated inversive difference field extensions obtained by adjoining transforms of the generators whose orders with respect to the components of the partition of $\sigma$ are bounded by two sequences of natural numbers. We show that such dimension polynomials carry essentially more invariants (that is, characteristics of the extension that do not depend on the set of its difference generators) than standard (univariate) difference dimension polynomials. We also show how the obtained results can be applied to the equivalence problem for systems of algebraic difference equations.
@article{FPM_2023_24_4_a8,
     author = {A. Levin},
     title = {New multivariate dimension polynomials of inversive difference field extensions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {143--169},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a8/}
}
TY  - JOUR
AU  - A. Levin
TI  - New multivariate dimension polynomials of inversive difference field extensions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 143
EP  - 169
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a8/
LA  - ru
ID  - FPM_2023_24_4_a8
ER  - 
%0 Journal Article
%A A. Levin
%T New multivariate dimension polynomials of inversive difference field extensions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 143-169
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a8/
%G ru
%F FPM_2023_24_4_a8
A. Levin. New multivariate dimension polynomials of inversive difference field extensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 143-169. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a8/

[1] Cohn R. M., Difference Algebra, Interscience, New York, 1965 | MR | Zbl

[2] A. Einstein., “The Meaning of Relativity”, Appendix II, Generalization of gravitation theory, Princeton, 1922, 133–165 | MR

[3] Kolchin E. R., “The notion of dimension in the theory of algebraic differential equations”, Bull. Amer. Math. Soc., 70 (1964), 570–573 | DOI | MR | Zbl

[4] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, 1973 | MR | Zbl

[5] Kondrateva M. V., Levin A. B., Mikhalev A. V., Pankratev E. V., “Computation of dimension polynomials”, Int. J. Algebra Comput., 2:2 (1992), 117–137 | DOI | MR | Zbl

[6] Kondrateva M. V., Levin A. B., Mikhalev A. V., Pankratev E. V., Differential and Difference Dimension Polynomials, Kluwer Academic, 1998 | MR

[7] Kondrateva M. V., Mikhalev A. V., Pankratev E. V., “Jacobi's bound for independent systems of algebraic partial differential equations”, Applicable Algebra Engin. Commun. Comput., 20:1 (2009), 65–71 | DOI | MR | Zbl

[8] Kondrateva M. V., Mikhalev A. V., Pankratev E. V., “Jacobi's bound for systems of algebraic differential equations”, J. Math. Sci., 163:5 (2009), 543–553 | DOI | MR | Zbl

[9] Levin A. B., “Characteristic polynomials of inversive difference modules and some properties of inversive difference dimension”, Russ. Math. Surv., 35:1 (1980), 217–218 | DOI | MR | Zbl

[10] Levin A. B., “Computation of the strength of systems of difference equations via generalized Groebner bases”, Groebner Bases in Symbolic Analysis, Walter de Gruyter, 2007, 43–73 | DOI | MR | Zbl

[11] Levin A. B., “Gröbner bases with respect to several orderings and multivariable dimension polynomials”, J. Symbol. Comput., 42 (2007), 561–578 | DOI | MR | Zbl

[12] Levin A. B., Difference Algebra, Springer, 2008 | MR | Zbl

[13] Levin A. B., “Dimension polynomials of intermediate differential fields and the strength of a system of differential equations with group action”, J. Math. Sci., 163:5 (2009), 554–562 | DOI | MR | Zbl

[14] Levin A. B., “Multivariate dimension polynomials of inversive difference field extensions”, Algebraic and Algorithmic Aspects of Differential and Integral Operators, Lect. Notes Comput. Sci., 8372, Springer, 2014, 146–163 | DOI | MR | Zbl

[15] Levin A. B., “Dimension polynomials of difference local algebras”, Adv. Appl. Math., 72 (2016), 166–174 | DOI | MR | Zbl

[16] Levin A. B., “Multivariate difference-differential dimension polynomials”, Math. Comput. Sci., 14 (2020), 361–374 | DOI | MR | Zbl

[17] Levin A. B., “A new type of difference dimension polynomials”, Math. Comput. Sci., 16:4 (2022), 20 | DOI | MR

[18] Levin A. B., Mikhalev A. V., “Differential dimension polynomial and the strength of a system of differential equations”, Computable Invariants in the Theory of Algebraic Systems, Novosibirsk, 1987, 58–66 | MR | Zbl

[19] Levin A. B., Mikhalev A. V., “Dimension polynomials of filtered $G$-modules and finitely generated $G$-field extensions”, Collection of Papers on Algebra, Moscow State Univ., 1989, 74–94

[20] Levin A. B., Mikhalev A. V., “Dimension polynomials of differential modules”, Abelian Groups Modules, 1989, no. 9, 51–67 | MR

[21] Levin A. B., Mikhalev A. V., “Dimension polynomials of difference-differential modules and of difference-differential field extensions”, Abelian Groups Modules, 1991, no. 10, 56–82 | MR

[22] Levin A. B., Mikhalev A. V., “Type and Dimension of Finitely Generated Vector $G$-spaces”, Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., 1991, no. 4, 72–74 | MR

[23] Levin A. B., Mikhalev A. V., “Dimension polynomials of filtered differential $G$-modules and extensions of differential $G$-fields”, Contemp. Math., 131, no. 2, 1992, 469–489 | DOI | MR | Zbl

[24] Levin A. B., Mikhalev A. V., “Type and dimension of finitely generated $G$-algebras”, Contemp. Math., 184, 1995, 275–280 | DOI | MR | Zbl

[25] Mikhalev A. V., Pankratev E. V., “Differential modules”, Modules, v. 3, Novosibirsk State Univ., 1973, 14–21 | MR

[26] Mikhalev A. V., Pankratev E. V., “Differential dimension polynomial of a system of differential equations”, Algebra, Collection of Papers, Moscow State Univ., 1980, 57–67 | Zbl

[27] Mikhalev A. V., Pankratev E. V., “Differential and difference algebra”, J. Soviet Math., 45:1 (1989), 912–955 | DOI | MR | Zbl

[28] Mikhalev A. V., Pankratev E. V., Computer Algebra. Calculations in Differential and Difference Algebra, Moscow State Univ., 1989 | MR

[29] Zhou M., Winkler F., “Computing difference-differential dimension polynomials by relative Gröbner bases in difference-differential modules”, J. Symbol. Comput., 43:10 (2008), 726–745 | DOI | MR | Zbl