Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2023_24_4_a8, author = {A. Levin}, title = {New multivariate dimension polynomials of inversive difference field extensions}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {143--169}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a8/} }
A. Levin. New multivariate dimension polynomials of inversive difference field extensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 143-169. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a8/
[1] Cohn R. M., Difference Algebra, Interscience, New York, 1965 | MR | Zbl
[2] A. Einstein., “The Meaning of Relativity”, Appendix II, Generalization of gravitation theory, Princeton, 1922, 133–165 | MR
[3] Kolchin E. R., “The notion of dimension in the theory of algebraic differential equations”, Bull. Amer. Math. Soc., 70 (1964), 570–573 | DOI | MR | Zbl
[4] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, 1973 | MR | Zbl
[5] Kondrateva M. V., Levin A. B., Mikhalev A. V., Pankratev E. V., “Computation of dimension polynomials”, Int. J. Algebra Comput., 2:2 (1992), 117–137 | DOI | MR | Zbl
[6] Kondrateva M. V., Levin A. B., Mikhalev A. V., Pankratev E. V., Differential and Difference Dimension Polynomials, Kluwer Academic, 1998 | MR
[7] Kondrateva M. V., Mikhalev A. V., Pankratev E. V., “Jacobi's bound for independent systems of algebraic partial differential equations”, Applicable Algebra Engin. Commun. Comput., 20:1 (2009), 65–71 | DOI | MR | Zbl
[8] Kondrateva M. V., Mikhalev A. V., Pankratev E. V., “Jacobi's bound for systems of algebraic differential equations”, J. Math. Sci., 163:5 (2009), 543–553 | DOI | MR | Zbl
[9] Levin A. B., “Characteristic polynomials of inversive difference modules and some properties of inversive difference dimension”, Russ. Math. Surv., 35:1 (1980), 217–218 | DOI | MR | Zbl
[10] Levin A. B., “Computation of the strength of systems of difference equations via generalized Groebner bases”, Groebner Bases in Symbolic Analysis, Walter de Gruyter, 2007, 43–73 | DOI | MR | Zbl
[11] Levin A. B., “Gröbner bases with respect to several orderings and multivariable dimension polynomials”, J. Symbol. Comput., 42 (2007), 561–578 | DOI | MR | Zbl
[12] Levin A. B., Difference Algebra, Springer, 2008 | MR | Zbl
[13] Levin A. B., “Dimension polynomials of intermediate differential fields and the strength of a system of differential equations with group action”, J. Math. Sci., 163:5 (2009), 554–562 | DOI | MR | Zbl
[14] Levin A. B., “Multivariate dimension polynomials of inversive difference field extensions”, Algebraic and Algorithmic Aspects of Differential and Integral Operators, Lect. Notes Comput. Sci., 8372, Springer, 2014, 146–163 | DOI | MR | Zbl
[15] Levin A. B., “Dimension polynomials of difference local algebras”, Adv. Appl. Math., 72 (2016), 166–174 | DOI | MR | Zbl
[16] Levin A. B., “Multivariate difference-differential dimension polynomials”, Math. Comput. Sci., 14 (2020), 361–374 | DOI | MR | Zbl
[17] Levin A. B., “A new type of difference dimension polynomials”, Math. Comput. Sci., 16:4 (2022), 20 | DOI | MR
[18] Levin A. B., Mikhalev A. V., “Differential dimension polynomial and the strength of a system of differential equations”, Computable Invariants in the Theory of Algebraic Systems, Novosibirsk, 1987, 58–66 | MR | Zbl
[19] Levin A. B., Mikhalev A. V., “Dimension polynomials of filtered $G$-modules and finitely generated $G$-field extensions”, Collection of Papers on Algebra, Moscow State Univ., 1989, 74–94
[20] Levin A. B., Mikhalev A. V., “Dimension polynomials of differential modules”, Abelian Groups Modules, 1989, no. 9, 51–67 | MR
[21] Levin A. B., Mikhalev A. V., “Dimension polynomials of difference-differential modules and of difference-differential field extensions”, Abelian Groups Modules, 1991, no. 10, 56–82 | MR
[22] Levin A. B., Mikhalev A. V., “Type and Dimension of Finitely Generated Vector $G$-spaces”, Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., 1991, no. 4, 72–74 | MR
[23] Levin A. B., Mikhalev A. V., “Dimension polynomials of filtered differential $G$-modules and extensions of differential $G$-fields”, Contemp. Math., 131, no. 2, 1992, 469–489 | DOI | MR | Zbl
[24] Levin A. B., Mikhalev A. V., “Type and dimension of finitely generated $G$-algebras”, Contemp. Math., 184, 1995, 275–280 | DOI | MR | Zbl
[25] Mikhalev A. V., Pankratev E. V., “Differential modules”, Modules, v. 3, Novosibirsk State Univ., 1973, 14–21 | MR
[26] Mikhalev A. V., Pankratev E. V., “Differential dimension polynomial of a system of differential equations”, Algebra, Collection of Papers, Moscow State Univ., 1980, 57–67 | Zbl
[27] Mikhalev A. V., Pankratev E. V., “Differential and difference algebra”, J. Soviet Math., 45:1 (1989), 912–955 | DOI | MR | Zbl
[28] Mikhalev A. V., Pankratev E. V., Computer Algebra. Calculations in Differential and Difference Algebra, Moscow State Univ., 1989 | MR
[29] Zhou M., Winkler F., “Computing difference-differential dimension polynomials by relative Gröbner bases in difference-differential modules”, J. Symbol. Comput., 43:10 (2008), 726–745 | DOI | MR | Zbl