Congruence-simple acts over completely simple semigroups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 133-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that an act $X$ over a completely simple semigroup $S=\mathcal M (G,I,\Lambda,P)$ is congruence-simple (i.e., it has no nontrivial congruences) if and only if one of the following conditions holds: (1) $|X|=1$; (2) $|X|=2$ and $|XS|=1$; (3) $X=\{z_1,z_2\}$, where $z_1$ and $z_2$ are zeros; (4) $X\cong R/\rho$, where $R$ is a minimal right ideal of the semigroup $S$ and $\rho$ is a maximal proper congruence of the right ideal $R$, which is considered as an act over $S$. We describe these congruences.
@article{FPM_2023_24_4_a7,
     author = {I. B. Kozhukhov and K. A. Kolesnikova},
     title = {Congruence-simple acts over completely simple semigroups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {133--142},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a7/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
AU  - K. A. Kolesnikova
TI  - Congruence-simple acts over completely simple semigroups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 133
EP  - 142
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a7/
LA  - ru
ID  - FPM_2023_24_4_a7
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%A K. A. Kolesnikova
%T Congruence-simple acts over completely simple semigroups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 133-142
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a7/
%G ru
%F FPM_2023_24_4_a7
I. B. Kozhukhov; K. A. Kolesnikova. Congruence-simple acts over completely simple semigroups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 133-142. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a7/

[1] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, Mir, M., 1972

[2] Kozhukhov I. B., Mikhalev A. V., “Poligony nad polugruppami”, Fundament. i prikl. matem., 23:3 (2020), 141–199 | MR

[3] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[4] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[5] Kozhuhov I. B., Pryanichnikov A. M., “Acts with identities in the congruence lattice”, Algebra Universalis, 83:16 (2022) | MR