Quasiregular radicals of nonassociative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 75-128
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper considers constructions of the quasiregular radical of linear algebras based on its associative and Jordan definitions, and methods for constructing homogeneous radicals of Lie algebras with finite pregrading based on radicals of linear Jordan pairs that allow one to determine the Lie analogues of the quasiregular radical.
@article{FPM_2023_24_4_a5,
author = {A. Yu. Golubkov},
title = {Quasiregular radicals of nonassociative algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {75--128},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a5/}
}
A. Yu. Golubkov. Quasiregular radicals of nonassociative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 75-128. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a5/