A~criterion of properness for a~family of functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 61-73
Voir la notice de l'article provenant de la source Math-Net.Ru
Proper families of functions are a convenient apparatus for specification of large parametric classes of quasigroups and $n$-quasigroups. K. D. Tsaregorodtsev noticed that in the Boolean case a family is proper if and only if every mapping specified by the family or any of its subfamilies has a unique fixed point. We extend this result to the case of $k$-valued logics for $k > 2$. We also show that reencoding transformations used in the extended criterion enriched (in terms of composition) with consistent renumbering of variables and functions form the stabilizer of the set of all proper families of the given size.
@article{FPM_2023_24_4_a4,
author = {A. V. Galatenko and A. E. Pankratiev and K. D. Tsaregorodtsev},
title = {A~criterion of properness for a~family of functions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {61--73},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a4/}
}
TY - JOUR AU - A. V. Galatenko AU - A. E. Pankratiev AU - K. D. Tsaregorodtsev TI - A~criterion of properness for a~family of functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2023 SP - 61 EP - 73 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a4/ LA - ru ID - FPM_2023_24_4_a4 ER -
A. V. Galatenko; A. E. Pankratiev; K. D. Tsaregorodtsev. A~criterion of properness for a~family of functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 61-73. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a4/