A~criterion of properness for a~family of functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 61-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Proper families of functions are a convenient apparatus for specification of large parametric classes of quasigroups and $n$-quasigroups. K. D. Tsaregorodtsev noticed that in the Boolean case a family is proper if and only if every mapping specified by the family or any of its subfamilies has a unique fixed point. We extend this result to the case of $k$-valued logics for $k > 2$. We also show that reencoding transformations used in the extended criterion enriched (in terms of composition) with consistent renumbering of variables and functions form the stabilizer of the set of all proper families of the given size.
@article{FPM_2023_24_4_a4,
     author = {A. V. Galatenko and A. E. Pankratiev and K. D. Tsaregorodtsev},
     title = {A~criterion of properness for a~family of functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {61--73},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a4/}
}
TY  - JOUR
AU  - A. V. Galatenko
AU  - A. E. Pankratiev
AU  - K. D. Tsaregorodtsev
TI  - A~criterion of properness for a~family of functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 61
EP  - 73
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a4/
LA  - ru
ID  - FPM_2023_24_4_a4
ER  - 
%0 Journal Article
%A A. V. Galatenko
%A A. E. Pankratiev
%A K. D. Tsaregorodtsev
%T A~criterion of properness for a~family of functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 61-73
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a4/
%G ru
%F FPM_2023_24_4_a4
A. V. Galatenko; A. E. Pankratiev; K. D. Tsaregorodtsev. A~criterion of properness for a~family of functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 61-73. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a4/

[1] Galatenko A. V., Nosov V. A., Pankratev A. E., Tsaregorodtsev K. D., “O porozhdenii $n$-kvazigrupp s pomoschyu pravilnykh semeistv funktsii”, Diskretnaya matematika, 35:1 (2023), 35–53 | DOI

[2] Glukhov M. M., “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2008, no. 2, 28–32 | Zbl

[3] Krasin V. Yu., “O slabykh izometriyakh buleva kuba”, Diskretnyi analiz i issledovanie operatsii, ser. 1, 13:4 (2006), 26–32 | MR | Zbl

[4] Nosov V. A., “Kriterii regulyarnosti bulevskogo neavtonomnogo avtomata s razdelennym vkhodom”, Intellektualnye sistemy, 3:3 (1998), 269–280 | MR

[5] Tsaregorodtsev K. D., “O vzaimno odnoznachnom sootvetstvii mezhdu pravilnymi semeistvami bulevykh funktsii i rebernymi orientatsiyami bulevykh kubov”, Prikladnaya diskretnaya matematika, 2020, no. 48, 16–21 | MR | Zbl

[6] Bruner R., De Winter S., “Weak isometries of Hamming spaces”, J. Algebra Combin. Discrete Structures Appl., 3:3 (2016), 209–216 | MR | Zbl

[7] Chakrabarti S., Galatenko A. V., Nosov V. A., Pankratiev A. E., Tiwari S. K., “Quasigroups generated by shift registers and Feistel networks”, Quasigroups Related Systems, 31:2 (2023), 207–220 | MR | Zbl

[8] Chauhan D., Gupta I., Verma R., “Quasigroups and their applications in cryptography”, Cryptologia, 45:3 (2021), 227–265 | DOI

[9] Chirivi R., The isometry group for the Hamming distance, 2015 http://annualreport.dmf.unisalento.it/2015/maths/algebra/chirivi1.pdf | Zbl

[10] De Winter S., Korb M., “Weak isometries of the Boolean cube”, Discrete Math., 339:2 (2016), 877–885 | DOI | MR | Zbl

[11] Galatenko A. V., Nosov V. A., Pankratiev A. E., “Latin squares over quasigroups”, Lobachevskii J. Math., 41:2 (2020), 194–203 | DOI | MR | Zbl

[12] Galatenko A. V., Nosov V. A., Pankratiev A. E., Tsaregorodtsev K. D., “Proper families of functions and their applications”, Matematicheskie voprosy kriptografii, 14:2 (2023), 43–58 | DOI | MR | Zbl

[13] Galatenko A. V., Pankratiev A. E., Staroverov V. M., “Generation of proper families of functions”, Lobachevskii J. Math., 43:3 (2022), 571–581 | DOI | MR | Zbl

[14] Markovski S., Mileva A., “Generating huge quasigroups from small non-linear bijections via extended Feistel function”, Quasigroups Related Systems, 17:1 (2009), 91–106 | MR | Zbl

[15] Markovski S., Mileva A., “NaSHA — family of cryptographic hash functions”, The First SHA-3 Candidate Conf. (Leuven, 2009)

[16] Richard A., “Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks”, Theor. Comp. Sci., 583 (2015), 1–26 | DOI | MR | Zbl

[17] Ruet P., “Geometric characterization of hereditarily bijective Boolean networks”, Cellular Automata, ACRI 2014, Lect. Notes Comp. Sci., 8751, Springer, Cham, 2014, 536–545 | DOI

[18] Ruet P., “Local cycles and dynamical properties of Boolean networks”, Math. Struct. Comp. Sci., 26:4 (2016), 702–718 | DOI | MR | Zbl

[19] Sade A., “Quasigroups automorphes par le groupe cyclique”, Can. J. Math., 9 (1957), 321–335 | DOI | MR | Zbl

[20] Shcherbacov V. A., “Quasigroups in cryptology”, Comp. Sci. J. Moldova, 17:2(50) (2009), 193–228 | MR | Zbl