Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2023_24_4_a4, author = {A. V. Galatenko and A. E. Pankratiev and K. D. Tsaregorodtsev}, title = {A~criterion of properness for a~family of functions}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {61--73}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a4/} }
TY - JOUR AU - A. V. Galatenko AU - A. E. Pankratiev AU - K. D. Tsaregorodtsev TI - A~criterion of properness for a~family of functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2023 SP - 61 EP - 73 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a4/ LA - ru ID - FPM_2023_24_4_a4 ER -
A. V. Galatenko; A. E. Pankratiev; K. D. Tsaregorodtsev. A~criterion of properness for a~family of functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 61-73. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a4/
[1] Galatenko A. V., Nosov V. A., Pankratev A. E., Tsaregorodtsev K. D., “O porozhdenii $n$-kvazigrupp s pomoschyu pravilnykh semeistv funktsii”, Diskretnaya matematika, 35:1 (2023), 35–53 | DOI
[2] Glukhov M. M., “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2008, no. 2, 28–32 | Zbl
[3] Krasin V. Yu., “O slabykh izometriyakh buleva kuba”, Diskretnyi analiz i issledovanie operatsii, ser. 1, 13:4 (2006), 26–32 | MR | Zbl
[4] Nosov V. A., “Kriterii regulyarnosti bulevskogo neavtonomnogo avtomata s razdelennym vkhodom”, Intellektualnye sistemy, 3:3 (1998), 269–280 | MR
[5] Tsaregorodtsev K. D., “O vzaimno odnoznachnom sootvetstvii mezhdu pravilnymi semeistvami bulevykh funktsii i rebernymi orientatsiyami bulevykh kubov”, Prikladnaya diskretnaya matematika, 2020, no. 48, 16–21 | MR | Zbl
[6] Bruner R., De Winter S., “Weak isometries of Hamming spaces”, J. Algebra Combin. Discrete Structures Appl., 3:3 (2016), 209–216 | MR | Zbl
[7] Chakrabarti S., Galatenko A. V., Nosov V. A., Pankratiev A. E., Tiwari S. K., “Quasigroups generated by shift registers and Feistel networks”, Quasigroups Related Systems, 31:2 (2023), 207–220 | MR | Zbl
[8] Chauhan D., Gupta I., Verma R., “Quasigroups and their applications in cryptography”, Cryptologia, 45:3 (2021), 227–265 | DOI
[9] Chirivi R., The isometry group for the Hamming distance, 2015 http://annualreport.dmf.unisalento.it/2015/maths/algebra/chirivi1.pdf | Zbl
[10] De Winter S., Korb M., “Weak isometries of the Boolean cube”, Discrete Math., 339:2 (2016), 877–885 | DOI | MR | Zbl
[11] Galatenko A. V., Nosov V. A., Pankratiev A. E., “Latin squares over quasigroups”, Lobachevskii J. Math., 41:2 (2020), 194–203 | DOI | MR | Zbl
[12] Galatenko A. V., Nosov V. A., Pankratiev A. E., Tsaregorodtsev K. D., “Proper families of functions and their applications”, Matematicheskie voprosy kriptografii, 14:2 (2023), 43–58 | DOI | MR | Zbl
[13] Galatenko A. V., Pankratiev A. E., Staroverov V. M., “Generation of proper families of functions”, Lobachevskii J. Math., 43:3 (2022), 571–581 | DOI | MR | Zbl
[14] Markovski S., Mileva A., “Generating huge quasigroups from small non-linear bijections via extended Feistel function”, Quasigroups Related Systems, 17:1 (2009), 91–106 | MR | Zbl
[15] Markovski S., Mileva A., “NaSHA — family of cryptographic hash functions”, The First SHA-3 Candidate Conf. (Leuven, 2009)
[16] Richard A., “Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks”, Theor. Comp. Sci., 583 (2015), 1–26 | DOI | MR | Zbl
[17] Ruet P., “Geometric characterization of hereditarily bijective Boolean networks”, Cellular Automata, ACRI 2014, Lect. Notes Comp. Sci., 8751, Springer, Cham, 2014, 536–545 | DOI
[18] Ruet P., “Local cycles and dynamical properties of Boolean networks”, Math. Struct. Comp. Sci., 26:4 (2016), 702–718 | DOI | MR | Zbl
[19] Sade A., “Quasigroups automorphes par le groupe cyclique”, Can. J. Math., 9 (1957), 321–335 | DOI | MR | Zbl
[20] Shcherbacov V. A., “Quasigroups in cryptology”, Comp. Sci. J. Moldova, 17:2(50) (2009), 193–228 | MR | Zbl