Gradings of Galois extensions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 11-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the gradings of finite field extensions in which all homogeneous components are one-dimensional. Such gradings are called fine. Kummer extensions are an important class of extensions that admit fine gradings. There always exists a standard grading of Kummer extension based on the Galois group. The paper describes all fine gradings of Kummer extensions, and, in particular, it establishes a criterion for any fine grading to be isomorphic to the standard one. We also investigate gradings of a wider class of Galois extensions that admit fine gradings.
@article{FPM_2023_24_4_a1,
     author = {D. A. Badulin and A. L. Kanunnikov},
     title = {Gradings of {Galois} extensions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {11--29},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a1/}
}
TY  - JOUR
AU  - D. A. Badulin
AU  - A. L. Kanunnikov
TI  - Gradings of Galois extensions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 11
EP  - 29
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a1/
LA  - ru
ID  - FPM_2023_24_4_a1
ER  - 
%0 Journal Article
%A D. A. Badulin
%A A. L. Kanunnikov
%T Gradings of Galois extensions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 11-29
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a1/
%G ru
%F FPM_2023_24_4_a1
D. A. Badulin; A. L. Kanunnikov. Gradings of Galois extensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 11-29. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a1/

[1] Artin E., Teoriya Galua, MTsNMO, M., 2008

[2] Badulin D. A., Kanunnikov A. L., “Graduirovki kummerovykh kvadratichnykh rasshirenii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2022, no. 2, 67–71 | MR | Zbl

[3] Leng S., Algebra, Mir, 1968

[4] Bahturin Yu. A., Zaicev M. V., Sehgal S. K., “Group gradings on associative algebras”, J. Algebra, 241 (2001), 677–698 | DOI | MR | Zbl

[5] Năstăsescu C., Van Oystaeyen F., Graded Ring Theory, North-Holland, Amsterdam, 2004 | MR

[6] Albu T., Cogalois Theory, Pure Appl. Math., CRC Press, 2003 | MR

[7] Albu T., “Applications of cogalois theory to elementary field arithmetic”, Advances in Ring Theory, eds. D. Van Huynth, S. R. Lópes-Permouth, Birkhäuser, 2010, 1–17 | MR | Zbl

[8] Gay D., Velez W. Y., “The torsion group of a radical extension”, Pacific J. Math., 92:2 (1981), 317–327 | DOI | MR | Zbl

[9] Milne J. S., Fields and Galois Theory, 2012 | MR

[10] De Orozco M. A., Velez W. Y., “The torsion group of a field defined by radicals”, J. Number Theory, 19:2 (1984), 283–294 | DOI | MR | Zbl