Gradings of Galois extensions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 11-29
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the gradings of finite field extensions in which all homogeneous components are one-dimensional. Such gradings are called fine. Kummer extensions are an important class of extensions that admit fine gradings. There always exists a standard grading of Kummer extension based on the Galois group. The paper describes all fine gradings of Kummer extensions, and, in particular, it establishes a criterion for any fine grading to be isomorphic to the standard one. We also investigate gradings of a wider class of Galois extensions that admit fine gradings.
@article{FPM_2023_24_4_a1,
author = {D. A. Badulin and A. L. Kanunnikov},
title = {Gradings of {Galois} extensions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {11--29},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a1/}
}
D. A. Badulin; A. L. Kanunnikov. Gradings of Galois extensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 4, pp. 11-29. http://geodesic.mathdoc.fr/item/FPM_2023_24_4_a1/