On rings with semidistributive modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 171-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

A module is said to be distributive if the lattice of its submodules is distributive. A direct sum of distributive modules is called a semidistributive module. In this paper, we consider rings $A$ such that all right $A$-modules are semidistributive.
@article{FPM_2023_24_3_a9,
     author = {A. A. Tuganbaev},
     title = {On rings with semidistributive modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {171--179},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a9/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - On rings with semidistributive modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 171
EP  - 179
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a9/
LA  - ru
ID  - FPM_2023_24_3_a9
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T On rings with semidistributive modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 171-179
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a9/
%G ru
%F FPM_2023_24_3_a9
A. A. Tuganbaev. On rings with semidistributive modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 171-179. http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a9/

[1] Asgari Sh., Behboodi M., Khedrizadeh S., “Left co-Köthe rings and their characterizations”, Commun. Algebra, 2023 | MR

[2] Asgari Sh., Behboodi M., Khedrizadeh S., “Several characterizations of left Köthe rings”, Rev. Real Acad. Cienc. Exact. Fis. Nat. Ser. A-Mat., 117:145 (2023) | MR

[3] Baghdari S., Öiner J., “Pure semisimple and Köthe group rings”, Commun. Algebra, 51:7 (2023), 2779–2790 | DOI | MR | Zbl

[4] Behboodi M., Ghorbani A., Moradzadeh-Dehkordi A., Shojaee S. H., “On left Köthe rings and a generalization of a Köthe-Cohen-Kaplansky theorem”, Proc. Amer. Math. Soc., 8 (2014), 2625–2631 | DOI | MR | Zbl

[5] Cohen I. S., Kaplansky I., “Rings for which every module is a direct sum of cyclic modules”, Math. Z., 54 (1951), 97–101 | DOI | MR | Zbl

[6] Dniester Notebook: Unsolved Problems in the Theory of Rings and Modules, Math. Inst., Russ. Acad. Sci., Siber. Branch, Novosibirsk, 1993 | Zbl

[7] Fazelpour Z., Nasr-Isfahani A., “Connections between representation-finite and Köthe rings”, J. Algebra, 514 (2018), 25–39 | DOI | MR | Zbl

[8] Fazelpour Z., Nasr-Isfahani A., Auslander correspondence for Kawada rings, arXiv: math.RT/2105.10898

[9] Fazelpour Z., Nasr-Isfahani A., “Coxeter diagrams and the Köthe's problem”, Canad. J. Math., 73:3 (2021), 656–686 | DOI | MR | Zbl

[10] Fuller K. R., “Rings of left invariant module type”, Commun. Algebra, 6 (1978), 153–167 | DOI | MR | Zbl

[11] Kawada Y., “On Köthe's problem concerning algebras for which every indecomposable module is cyclic. I-III”, Sci. Rep. Tokyo Kyoiku Daigaku, 7 (1962), 154–230 ; 8 (1963), 1–62; 9:165–250 (1964) | MR | Zbl

[12] Köthe G., “Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring”, Math. Z., 39:1 (1935), 31–44 | DOI | MR

[13] Nakayama T., “Note on uni-serial and generalized uni-serial rings”, Proc. Imp. Acad. Tokyo, 16 (1940), 285–289 | MR | Zbl

[14] Nakayama T., “On Frobeniusean algebras. II”, Ann. Math., 42 (1941), 1–27 | DOI | MR

[15] Ringel C. M., “Kawada's theorem”, Abelian Group Theorem, Proc. of the Oberwolfach Conf., January 12-17, 1981, Lect. Notes Math., 874, Springer, Berlin, 1981, 431–447 | DOI | MR

[16] Tuganbaev A., “Rings over which every module is a direct sum of distributive modules”, Moscow Univ. Math. Bull., 1980, no. 1, 61–64 | MR | Zbl

[17] Tuganbaev A., Semidistributive Modules and Rings, Springer, Dordrecht, 1998 | MR

[18] Tuganbaev A., “$\aleph_0$-distributive modules and rings”, Int. J. Algebra Comput., 2023 | MR