Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2023_24_3_a8, author = {Ya. S. Pepko and V. V. Borisenko}, title = {Topology-preserving triangulation simplification algorithm by edge contraction}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {153--169}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a8/} }
TY - JOUR AU - Ya. S. Pepko AU - V. V. Borisenko TI - Topology-preserving triangulation simplification algorithm by edge contraction JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2023 SP - 153 EP - 169 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a8/ LA - ru ID - FPM_2023_24_3_a8 ER -
Ya. S. Pepko; V. V. Borisenko. Topology-preserving triangulation simplification algorithm by edge contraction. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 153-169. http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a8/
[1] Botsch M., Kobbelt L., Pauly M., Alliez P., Levy B., Polygon Mesh Processing, Peters, 2010, 85–130
[2] Chan S. L., Purisima E. O., “A new tetrahedral tesselation scheme for isosurface generation”, Computers Graphics, 22:1 (1998), 83–90 | DOI
[3] Ciarlet P., Lamour F., “Does contraction preserve triangular meshes?”, Numerical Algorithms, 13 (1996), 201–223 | DOI | MR | Zbl
[4] Dey T. K., Edelsbrunner H., Guha S., Nekhayev D. V., “Topology preserving edge contraction”, Publ. Inst. Math., Nouv. Sér., 66(80) (1999), 23–45 | MR
[5] Doi A., Koide A., “An efficient method of triangulating equi-valued surfaces by using tetrahedral cells”, IEICE Trans. Inform. Systems, E74-D:1 (1991), 214–224
[6] Garland M., Quadric-Based Polygonal Surface Simplification, Carnegie Mellon Univ., 1998
[7] Garland M., “Multiresolution Modeling: Survey and Future Opportunities”, Eurographics 1999
[8] Garland M., Heckbert P. S., “Surface simplification using quadric error metrics”, Proc. of the 24th Annual Conf. on Computer Graphics and Interactive Techniques, SIGGRAPH'97, 1997, 209–216 | MR
[9] Heckbert P. S., Garland M., “Survey of Polygonal Surface Simplification Algorithms”, SIGGRAPH'97, Course Notes, 25, ACM Press, New York, 1997, 97 pp.
[10] Hoppe H., DeRose T., Duchamp T., McDonald J., Stuetzle W., “Mesh optimization”, Proc. of the 20th Annual Conf. on Computer Graphics and Interactive Techniques, SIGGRAPH'93, 1993, 19–26 | MR
[11] Munz T., Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary, Bournemouth Univ., 2015
[12] Skala V., “Precision of iso-surface extraction from volume data and visualization”, ALGORITHMY 2000: 15th Conf. on Scientific Computing, 2000, 368–378
[13] Song Y., Fellegara R., Iuricich F., De Floriani L., “Efficient topology-aware simplification of large triangulated terrains”, Proc. of the 29th Int. Conf. on Advances in Geographic Information Systems, SIGSPATIAL'21, 2021, 576–587
[14] Talton J. O., A Short Survey of Mesh Simplification Algorithms, Univ. Illinois at Urbana-Champaign, 2004
[15] Treece G. M., Prager R. W., Gee A. H., “Regularised marching tetrahedra: improved iso-surface extraction”, Computers Graphics, 23:4 (1999), 583–598 | DOI