Topology-preserving triangulation simplification algorithm by edge contraction
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 153-169

Voir la notice de l'article provenant de la source Math-Net.Ru

Triangulation is widely used to represent models of real objects in digital form, and often, in order to get the desired model, we need to triangulate it from data of another kind, for example, from a voxel model. There are methods that allow one to do it, but the resulting triangulation does not always have the desired quality. One way to solve this problem is triangulation simplification algorithms. However, they have disadvantages; in particular, in some cases they can destroy the model topology during the simplification process, which leads to the rejection of the simplification of the tetrahedral mesh in some local area. In this paper, we will consider the naive method of triangulation simplification using edge contraction, its shortcomings, and propose its modification that allows us to contract any edges without topology violations.
@article{FPM_2023_24_3_a8,
     author = {Ya. S. Pepko and V. V. Borisenko},
     title = {Topology-preserving triangulation simplification algorithm by edge contraction},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {153--169},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a8/}
}
TY  - JOUR
AU  - Ya. S. Pepko
AU  - V. V. Borisenko
TI  - Topology-preserving triangulation simplification algorithm by edge contraction
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 153
EP  - 169
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a8/
LA  - ru
ID  - FPM_2023_24_3_a8
ER  - 
%0 Journal Article
%A Ya. S. Pepko
%A V. V. Borisenko
%T Topology-preserving triangulation simplification algorithm by edge contraction
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 153-169
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a8/
%G ru
%F FPM_2023_24_3_a8
Ya. S. Pepko; V. V. Borisenko. Topology-preserving triangulation simplification algorithm by edge contraction. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 153-169. http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a8/