The typical dimension of a~system of first-order differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 129-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a system of first-order partial differential equations in one variable has a nonzero Kolchin dimension polynomial, then its leading coefficient is equal to $1$. The notion of typical differential dimension plays an important role in differential algebra. Some of its estimations were proved by J. Ritt and E. Kolchin; they also advanced several conjectures that were later refuted. There are bounds for the typical differential dimension in codimension $1$ (E. Kolchin) and in the case of linear differential equations (D. Grigoriev). Note that in codimension $2$ for systems of linear differential equations in one indeterminate the well-known Bézout theorem holds, and in the case of several variables, we have earlier proved its analogue, which is not satisfied in higher codimensions. For nonlinear systems, in the general case, there are no exponential bounds yet (although it is known that the growth of the typical dimension is bounded by the Ackermann function).
@article{FPM_2023_24_3_a6,
     author = {M. V. Kondratieva},
     title = {The typical dimension of a~system of first-order differential equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a6/}
}
TY  - JOUR
AU  - M. V. Kondratieva
TI  - The typical dimension of a~system of first-order differential equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2023
SP  - 129
EP  - 138
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a6/
LA  - ru
ID  - FPM_2023_24_3_a6
ER  - 
%0 Journal Article
%A M. V. Kondratieva
%T The typical dimension of a~system of first-order differential equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2023
%P 129-138
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a6/
%G ru
%F FPM_2023_24_3_a6
M. V. Kondratieva. The typical dimension of a~system of first-order differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2023) no. 3, pp. 129-138. http://geodesic.mathdoc.fr/item/FPM_2023_24_3_a6/

[1] Kondrateva M., “Verkhnyaya granitsa minimiziruyuschikh koeffitsientov razmernostnogo mnogochlena Kolchina”, Programmirovanie, 36:2 (2010), 83–86 | MR | Zbl

[2] Kondrateva M. V., “Otsenka tipovoi differentsialnoi razmernosti sistemy lineinykh differentsialnykh uravnenii”, Fundament. i prikl. matem., 22:5 (2019), 259–269

[3] Chistov A., Grigoriev D., “Complexity of a standard basis of a D-module”, St. Petersburg Math. J., 20 (2009), 709–736 | DOI | MR | Zbl

[4] Grigoriev D., “Weak Bezout inequality for D-modules”, J. Complexity, 21 (2005), 532–542 | DOI | MR | Zbl

[5] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, 1973 | MR | Zbl

[6] Kondratieva M. V., Levin A. B., Mikhalev A. V., Pankratiev E. V., Differential and Difference Dimension Polynomials, Kluwer Academic, 1999 | MR | Zbl

[7] Ritt J., Differential Algebra, Amer. Math. Soc., New York, 1950 | MR | Zbl