First- and second-order framings of Mandelbrot sets and structure of fixed points of quadratic polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 2, pp. 197-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the research of R. Kronover and J. Minlor, H.-O. Peitgen and P. H. Richter. Using mathematical methods and computer experiments, the first- and second-order framings of the Mandelbrot sets of three families of the quadratic polynomials of a complex variable are revealed. The connection between the first- and second-order framings of Mandelbrot sets of the functions $f_{2}(z)=z^2+cz$, $f_{3}(z)=z^{2}+z+c$, and $f_{4}(z)=cz^{2}+c$ with remarkable curves (cardioid, lemniscate, and circle) was established. The algorithms of constructing the framings of Mandelbrot sets of considered functions in the mathematical package MathCad and Pascal programs have been worked out. Algorithms for constructing Mandelbrot sets in Pascal programs are developed.
@article{FPM_2022_24_2_a4,
     author = {V. S. Sekovanov and L. B. Rybina},
     title = {First- and second-order framings of {Mandelbrot} sets and structure of fixed points of quadratic polynomials},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {197--212},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a4/}
}
TY  - JOUR
AU  - V. S. Sekovanov
AU  - L. B. Rybina
TI  - First- and second-order framings of Mandelbrot sets and structure of fixed points of quadratic polynomials
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2022
SP  - 197
EP  - 212
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a4/
LA  - ru
ID  - FPM_2022_24_2_a4
ER  - 
%0 Journal Article
%A V. S. Sekovanov
%A L. B. Rybina
%T First- and second-order framings of Mandelbrot sets and structure of fixed points of quadratic polynomials
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2022
%P 197-212
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a4/
%G ru
%F FPM_2022_24_2_a4
V. S. Sekovanov; L. B. Rybina. First- and second-order framings of Mandelbrot sets and structure of fixed points of quadratic polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 2, pp. 197-212. http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a4/

[1] Kronover R. M., Fraktaly i khaos: v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000

[2] Markushevich A. I., Markushevich L. A., Vvedenie v teoriyu analiticheskikh funktsii, Prosveschenie, M., 1977

[3] Minlor Dzh., Golomorfnaya dinamika, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2000

[4] Paitgen Kh.-O., Rikhter P. Kh., Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem, Mir, M., 1993

[5] Sekovanov V. S., “O mnozhestvakh Zhyulia nekotorykh ratsionalnykh funktsii”, Vestn. KGU im. N. A. Nekrasova, 18:2 (2012), 23–28

[6] Sekovanov V. S., Elementy teorii fraktalnykh mnozhestv, Liberkom, M., 2014

[7] Sekovanov V. S., “Gladkie mnozhestva Zhyulia”, Fundament. i prikl. matem., 21:4 (2016), 133–150

[8] Sekovanov V. S., “O nekotorykh diskretnykh nelineinykh dinamicheskikh sistemakh”, Fundament. i prikl. matem., 21:3 (2016), 185–199 | MR

[9] Sekovanov V. S., Chto takoe fraktalnaya geometriya?, Lenand, M., 2016

[10] Sekovanov V. S., Elementy teorii diskretnykh dinamicheskikh sistem, Lan, SPb., 2017

[11] Sekovanov V. S., Fraktalnaya geometriya. Prepodavanie, zadachi, algoritmy, sinergetika, estetika, prilozheniya, Lan, SPb., 2019

[12] Sekovanov V. S., “O mnozhestvakh Zhyulia funktsii, imeyuschikh nepodvizhnye parabolicheskie tochki”, Fundament. i prikl. matem., 23:4 (2021), 163–176 | MR

[13] Sekovanov V. S., Rybina L. B., Berezkina A. E., “O mnozhestvakh Zhyulia funktsii, imeyuschikh parabolicheskuyu nepodvizhnuyu tochku”, Aktualnye problemy prepodavaniya informatsionnykh i estestvenno-nauchnykh distsiplin, KGU, Kostroma, 2018, 144–150

[14] Sekovanov V. S., Rybina L. B., Strunkina K. Yu., “Izuchenie obramlenii mnozhestv Mandelbrota polinomov vtoroi stepeni kak sredstvo razvitiya originalnosti myshleniya studentov”, Vestn. Kostrom. gos. un-ta. Ser. Pedagogika. Psikhologiya. Sotsiokinetika, 25:4 (2019), 193–199

[15] Sekovanov V. S., Smirnova A. O., “Razvitie gibkosti myshleniya studentov pri izuchenii struktury nepodvizhnykh tochek polinomov kompleksnoi peremennoi”, Vestn. Kostrom. gos. un-ta. Ser. Pedagogika. Psikhologiya. Sotsiokinetika, 22:3 (2016), 189–192

[16] Falconer K., Fractal Geometry: Mathematical Foundations and Applications, John Wiley, New York, 1990 | Zbl

[17] Sekovanov V., Ivkov V., Piguzov A., Fateev A., “Performing a multi-stage mathematical and informational task «Building a fractal set with L-systems and information technoloqies» as a means of developing students' creativity”, CEUR Workshop Proceedings, 2016, 204–211