Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2022_24_2_a4, author = {V. S. Sekovanov and L. B. Rybina}, title = {First- and second-order framings of {Mandelbrot} sets and structure of fixed points of quadratic polynomials}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {197--212}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a4/} }
TY - JOUR AU - V. S. Sekovanov AU - L. B. Rybina TI - First- and second-order framings of Mandelbrot sets and structure of fixed points of quadratic polynomials JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2022 SP - 197 EP - 212 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a4/ LA - ru ID - FPM_2022_24_2_a4 ER -
%0 Journal Article %A V. S. Sekovanov %A L. B. Rybina %T First- and second-order framings of Mandelbrot sets and structure of fixed points of quadratic polynomials %J Fundamentalʹnaâ i prikladnaâ matematika %D 2022 %P 197-212 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a4/ %G ru %F FPM_2022_24_2_a4
V. S. Sekovanov; L. B. Rybina. First- and second-order framings of Mandelbrot sets and structure of fixed points of quadratic polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 2, pp. 197-212. http://geodesic.mathdoc.fr/item/FPM_2022_24_2_a4/
[1] Kronover R. M., Fraktaly i khaos: v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000
[2] Markushevich A. I., Markushevich L. A., Vvedenie v teoriyu analiticheskikh funktsii, Prosveschenie, M., 1977
[3] Minlor Dzh., Golomorfnaya dinamika, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2000
[4] Paitgen Kh.-O., Rikhter P. Kh., Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem, Mir, M., 1993
[5] Sekovanov V. S., “O mnozhestvakh Zhyulia nekotorykh ratsionalnykh funktsii”, Vestn. KGU im. N. A. Nekrasova, 18:2 (2012), 23–28
[6] Sekovanov V. S., Elementy teorii fraktalnykh mnozhestv, Liberkom, M., 2014
[7] Sekovanov V. S., “Gladkie mnozhestva Zhyulia”, Fundament. i prikl. matem., 21:4 (2016), 133–150
[8] Sekovanov V. S., “O nekotorykh diskretnykh nelineinykh dinamicheskikh sistemakh”, Fundament. i prikl. matem., 21:3 (2016), 185–199 | MR
[9] Sekovanov V. S., Chto takoe fraktalnaya geometriya?, Lenand, M., 2016
[10] Sekovanov V. S., Elementy teorii diskretnykh dinamicheskikh sistem, Lan, SPb., 2017
[11] Sekovanov V. S., Fraktalnaya geometriya. Prepodavanie, zadachi, algoritmy, sinergetika, estetika, prilozheniya, Lan, SPb., 2019
[12] Sekovanov V. S., “O mnozhestvakh Zhyulia funktsii, imeyuschikh nepodvizhnye parabolicheskie tochki”, Fundament. i prikl. matem., 23:4 (2021), 163–176 | MR
[13] Sekovanov V. S., Rybina L. B., Berezkina A. E., “O mnozhestvakh Zhyulia funktsii, imeyuschikh parabolicheskuyu nepodvizhnuyu tochku”, Aktualnye problemy prepodavaniya informatsionnykh i estestvenno-nauchnykh distsiplin, KGU, Kostroma, 2018, 144–150
[14] Sekovanov V. S., Rybina L. B., Strunkina K. Yu., “Izuchenie obramlenii mnozhestv Mandelbrota polinomov vtoroi stepeni kak sredstvo razvitiya originalnosti myshleniya studentov”, Vestn. Kostrom. gos. un-ta. Ser. Pedagogika. Psikhologiya. Sotsiokinetika, 25:4 (2019), 193–199
[15] Sekovanov V. S., Smirnova A. O., “Razvitie gibkosti myshleniya studentov pri izuchenii struktury nepodvizhnykh tochek polinomov kompleksnoi peremennoi”, Vestn. Kostrom. gos. un-ta. Ser. Pedagogika. Psikhologiya. Sotsiokinetika, 22:3 (2016), 189–192
[16] Falconer K., Fractal Geometry: Mathematical Foundations and Applications, John Wiley, New York, 1990 | Zbl
[17] Sekovanov V., Ivkov V., Piguzov A., Fateev A., “Performing a multi-stage mathematical and informational task «Building a fractal set with L-systems and information technoloqies» as a means of developing students' creativity”, CEUR Workshop Proceedings, 2016, 204–211