Interpolation pseudo-ordered rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 177-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

Characteristics of partially pseudo-ordered ($K$-ordered) rings are considered. Properties of the set $L(R)$ of all convex directed ideals in pseudo-ordered rings are described. The convexity of ideals has the meaning of the Abelian convexity, which is based on the definition of a convex subgroup for a partially ordered group. It is proved that if $R$ is an interpolation pseudo-ordered ring, then, in the lattice $L(R)$, the union operation is completely distributive with respect to the intersection. Properties of the lattice $L(R)$ for pseudo-lattice pseudo-ordered rings are investigated. The second and third theorems of ring order isomorphisms for interpolation pseudo-ordered rings are proved. Some theorems are proved for principal convex directed ideals of interpolation pseudo-ordered rings. The principal convex directed ideal $I_a$ of a partially pseudo-ordered ring $R$ is the smallest convex directed ideal of the ring $R$ that contains the element $a\in R$. The analog for the third theorem of ring order isomorphisms for principal convex directed ideals is demonstrated for interpolation pseudo-ordered rings.
@article{FPM_2022_24_1_a5,
     author = {A. V. Mikhalev and E. E. Shirshova},
     title = {Interpolation pseudo-ordered rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {177--191},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a5/}
}
TY  - JOUR
AU  - A. V. Mikhalev
AU  - E. E. Shirshova
TI  - Interpolation pseudo-ordered rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2022
SP  - 177
EP  - 191
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a5/
LA  - ru
ID  - FPM_2022_24_1_a5
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%A E. E. Shirshova
%T Interpolation pseudo-ordered rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2022
%P 177-191
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a5/
%G ru
%F FPM_2022_24_1_a5
A. V. Mikhalev; E. E. Shirshova. Interpolation pseudo-ordered rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 177-191. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a5/

[1] Bibaeva V. N, Shirshova E. E., “O lineino $K$-uporyadochennykh koltsakh”, Fundament. i prikl. matem., 17:4 (2011/2012), 13–23

[2] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[3] Kopytov V. M., “Uporyadochenie algebr Li”, Algebra i logika, 11:3 (1972), 295–325 | MR | Zbl

[4] Kopytov V. M., Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR

[5] Kochetova Yu. V., Shirshova E. E., “O lineino uporyadochennykh lineinykh algebrakh”, Fundament. i prikl. matem., 15:1 (2009), 53–63

[6] Kochetova Yu. V., Shirshova E. E., “Pervichnyi radikal reshetochno $\mathcal K$-uporyadochennykh algebr”, Fundament. i prikl. matem., 18:1 (2013), 85–158

[7] Mikhalev A. V., Shirshova E. E., “Pervichnyi radikal napravlennykh psevdouporyadochennykh kolets”, Fundament. i prikl. matem., 22:4 (2019), 147–166

[8] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965

[9] Shirshova E. E., “O svoistvakh gomomorfizmov grupp Rissa”, UMN, 46:5(281) (1991), 157–158 | MR

[10] Shirshova E. E., “Ob obobschenii ponyatiya ortogonalnosti i gruppakh Rissa”, Matem. zametki, 69:1 (2001), 122–132 | MR | Zbl

[11] Shirshova E. E., “O svoistvakh interpolyatsionnykh grupp”, Matem. zametki, 93:2 (2013), 295–304 | MR | Zbl

[12] Shirshova E. E., “O vypuklykh podgruppakh grupp s interpolyatsionnym usloviem”, Fundament. i prikl. matem., 17:7 (2011/2012), 187–199

[13] Shirshova E. E., “O chastichno $K$-uporyadochennykh koltsakh”, Fundament. i prikl. matem., 21:1 (2016), 225–239 | MR

[14] Shirshova E. E., “O vypuklykh napravlennykh podgruppakh psevdoreshetochno uporyadochennykh grupp”, Fundament. i prikl. matem., 22:4 (2019), 238–252

[15] Shirshova E. E., “On groups with the almost orthogonality condition”, Commun. Algebra, 28:10 (2000), 4803–4818 | DOI | MR | Zbl