Some properties of coefficients of the Kolchin dimension polynomial
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 165-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a formula expressing Macaulay constants of a numerical polynomial through its minimizing coefficients. From this, we obtain that Macaulay constants of Kolchin dimension polynomials do not decrease. For the minimal differential dimension polynomial $\omega_{\mathcal G/\mathcal F}$ (this concept was introduced by W. Sitt) we will prove a criterion for Macaulay constants to be equal. In this case, as our example shows, there are no bounds from above to the Macaulay constants of the polynomial $\omega_{\xi/\mathcal F}$ for $\mathcal G=\mathcal F\langle\xi\rangle$.
@article{FPM_2022_24_1_a4,
     author = {M. V. Kondratieva},
     title = {Some properties of coefficients of the {Kolchin} dimension polynomial},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {165--176},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a4/}
}
TY  - JOUR
AU  - M. V. Kondratieva
TI  - Some properties of coefficients of the Kolchin dimension polynomial
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2022
SP  - 165
EP  - 176
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a4/
LA  - ru
ID  - FPM_2022_24_1_a4
ER  - 
%0 Journal Article
%A M. V. Kondratieva
%T Some properties of coefficients of the Kolchin dimension polynomial
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2022
%P 165-176
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a4/
%G ru
%F FPM_2022_24_1_a4
M. V. Kondratieva. Some properties of coefficients of the Kolchin dimension polynomial. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 165-176. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a4/

[1] Kondrateva M. V., “Opisanie mnozhestva minimalnykh differentsialnykh razmernostnykh mnogochlenov”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 1, 35–39

[2] Dubé T., “The structure of polynomial ideals and Gröbner bases”, SIAM J. Comput., 19:4 (1990), 750–773 | DOI | MR | Zbl

[3] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, 1973 | MR | Zbl

[4] Kondratieva M. V., Levin A. B., Mikhalev A. V., Pankratiev E. V., Differential and Difference Dimension Polynomials, Kluwer Academic, 1999 | MR | Zbl

[5] Sit W., “Well-ordering of certain numerical polynomials”, Trans. Amer. Math. Soc., 212 (1975), 37–45 | DOI | MR | Zbl

[6] Stanley R., “Hilbert functions of graded algebras”, Adv. Math., 28 (1978), 57–83 | DOI | MR | Zbl