Subalgebras in semirings of continuous partial real-valued functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 125-140

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper refers to the theory of semirings of continuous numerical functions, which has been developed within functional algebra. The object of the investigation is semirings $CP(X)$ of continuous partial functions on topological spaces $X$ with the values in the topological field $\mathbf{R}$ of real numbers. The subject of study is the subalgebras of semirings $CP(X)$. Some properties of the lattices $A(X)$ of all possible subalgebras and $A_1(X)$ of all subalgebras with identity are considered. The structure of atoms and preatoms in lattices $A_1(X)$ is clarified. This allowed us to solve the problem of the absolute determinability of $T_1$-spaces $X$ by each of the lattices $A_1(X)$ and $A_1(X)$.
@article{FPM_2022_24_1_a2,
     author = {E. M. Vechtomov and E. N. Lubyagina},
     title = {Subalgebras in semirings of continuous partial real-valued functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {125--140},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - E. N. Lubyagina
TI  - Subalgebras in semirings of continuous partial real-valued functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2022
SP  - 125
EP  - 140
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/
LA  - ru
ID  - FPM_2022_24_1_a2
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A E. N. Lubyagina
%T Subalgebras in semirings of continuous partial real-valued functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2022
%P 125-140
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/
%G ru
%F FPM_2022_24_1_a2
E. M. Vechtomov; E. N. Lubyagina. Subalgebras in semirings of continuous partial real-valued functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 125-140. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/