Subalgebras in semirings of continuous partial real-valued functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 125-140
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper refers to the theory of semirings of continuous numerical functions, which has been developed within functional algebra. The object of the investigation is semirings $CP(X)$ of continuous partial functions on topological spaces $X$ with the values in the topological field $\mathbf{R}$ of real numbers. The subject of study is the subalgebras of semirings $CP(X)$. Some properties of the lattices $A(X)$ of all possible subalgebras and $A_1(X)$ of all subalgebras with identity are considered. The structure of atoms and preatoms in lattices $A_1(X)$ is clarified. This allowed us to solve the problem of the absolute determinability of $T_1$-spaces $X$ by each of the lattices $A_1(X)$ and $A_1(X)$.
@article{FPM_2022_24_1_a2,
author = {E. M. Vechtomov and E. N. Lubyagina},
title = {Subalgebras in semirings of continuous partial real-valued functions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {125--140},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/}
}
TY - JOUR AU - E. M. Vechtomov AU - E. N. Lubyagina TI - Subalgebras in semirings of continuous partial real-valued functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2022 SP - 125 EP - 140 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/ LA - ru ID - FPM_2022_24_1_a2 ER -
E. M. Vechtomov; E. N. Lubyagina. Subalgebras in semirings of continuous partial real-valued functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 125-140. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/