Subalgebras in semirings of continuous partial real-valued functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 125-140
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper refers to the theory of semirings of continuous numerical functions, which has been developed within functional algebra. The object of the investigation is semirings $CP(X)$ of continuous partial functions on topological spaces $X$ with the values in the topological field $\mathbf{R}$ of real numbers. The subject of study is the subalgebras of semirings $CP(X)$. Some properties of the lattices $A(X)$ of all possible subalgebras and $A_1(X)$ of all subalgebras with identity are considered. The structure of atoms and preatoms in lattices $A_1(X)$ is clarified. This allowed us to solve the problem of the absolute determinability of $T_1$-spaces $X$ by each of the lattices $A_1(X)$ and $A_1(X)$.
@article{FPM_2022_24_1_a2,
     author = {E. M. Vechtomov and E. N. Lubyagina},
     title = {Subalgebras in semirings of continuous partial real-valued functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {125--140},
     year = {2022},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - E. N. Lubyagina
TI  - Subalgebras in semirings of continuous partial real-valued functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2022
SP  - 125
EP  - 140
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/
LA  - ru
ID  - FPM_2022_24_1_a2
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A E. N. Lubyagina
%T Subalgebras in semirings of continuous partial real-valued functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2022
%P 125-140
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/
%G ru
%F FPM_2022_24_1_a2
E. M. Vechtomov; E. N. Lubyagina. Subalgebras in semirings of continuous partial real-valued functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 125-140. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/

[1] Vechtomov E. M., Lubyagina E. N., “Polukoltsa nepreryvnykh chastichnykh deistvitelnoznachnykh funktsii”, Proc. of the 48th Int. Youth School-Conference “Modern Problems in Mathematics and Its Applications” (Yekaterinburg, Russia, February 5–11, 2017), CEUR Workshop Proceedings, 1894, 20–29 | MR

[2] Vechtomov E. M., Lubyagina E. N., Sidorov V. V., Chuprakov D. V., Elementy funktsionalnoi algebry, ed. E. M. Vechtomov, Raduga-PRESS, Kirov, 2016

[3] Gelfand I. M., Kolmogorov A. N., “O koltsakh nepreryvnykh funktsii na topologicheskikh prostranstvakh”, DAN SSSR, 22:1 (1939), 11–15

[4] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982

[5] Sidorov V. V., “Izomorfizmy reshetok podalgebr polupolei nepreryvnykh polozhitelnykh funktsii”, Sib. matem. zhurn., 60:3 (2019), 676–694 | MR | Zbl

[6] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[7] Gillman L., Jerison M., Rings of Continuous Functions, New York, 1976 | MR

[8] Golan J. S., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999 | MR | Zbl

[9] Hewitt E., “Rings of real-valued continuous functions. I”, Trans. Amer. Math. Soc., 64:1 (1948), 45–99 | DOI | MR | Zbl

[10] Sidorov V. V., “Isomorphisms of semirings of continuous nonnegative functions and the lattices of their subalgebras”, Lobachevskii J. Math., 41:9 (2020), 1684–1692 | DOI | MR | Zbl