Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2022_24_1_a2, author = {E. M. Vechtomov and E. N. Lubyagina}, title = {Subalgebras in semirings of continuous partial real-valued functions}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {125--140}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/} }
TY - JOUR AU - E. M. Vechtomov AU - E. N. Lubyagina TI - Subalgebras in semirings of continuous partial real-valued functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2022 SP - 125 EP - 140 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/ LA - ru ID - FPM_2022_24_1_a2 ER -
E. M. Vechtomov; E. N. Lubyagina. Subalgebras in semirings of continuous partial real-valued functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 125-140. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a2/
[1] Vechtomov E. M., Lubyagina E. N., “Polukoltsa nepreryvnykh chastichnykh deistvitelnoznachnykh funktsii”, Proc. of the 48th Int. Youth School-Conference “Modern Problems in Mathematics and Its Applications” (Yekaterinburg, Russia, February 5–11, 2017), CEUR Workshop Proceedings, 1894, 20–29 | MR
[2] Vechtomov E. M., Lubyagina E. N., Sidorov V. V., Chuprakov D. V., Elementy funktsionalnoi algebry, ed. E. M. Vechtomov, Raduga-PRESS, Kirov, 2016
[3] Gelfand I. M., Kolmogorov A. N., “O koltsakh nepreryvnykh funktsii na topologicheskikh prostranstvakh”, DAN SSSR, 22:1 (1939), 11–15
[4] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982
[5] Sidorov V. V., “Izomorfizmy reshetok podalgebr polupolei nepreryvnykh polozhitelnykh funktsii”, Sib. matem. zhurn., 60:3 (2019), 676–694 | MR | Zbl
[6] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[7] Gillman L., Jerison M., Rings of Continuous Functions, New York, 1976 | MR
[8] Golan J. S., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999 | MR | Zbl
[9] Hewitt E., “Rings of real-valued continuous functions. I”, Trans. Amer. Math. Soc., 64:1 (1948), 45–99 | DOI | MR | Zbl
[10] Sidorov V. V., “Isomorphisms of semirings of continuous nonnegative functions and the lattices of their subalgebras”, Lobachevskii J. Math., 41:9 (2020), 1684–1692 | DOI | MR | Zbl