Influence of the Baer--Kaplansky theorem on the development of the theory of groups, rings, and modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 31-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

The review presents an analysis of results of the Abelian group theory, as well as rings and modules, which concern the definability of algebraic structures by their endomorphism rings and related structures. In the systematization of the results, the greatest attention is paid to torsion-free Abelian groups, which are of particular interest due to the presence of non-isomorphic direct decompositions in this class. This significantly expands the understanding of general, including modern, trends of the development of algebra in the context related to the Baer–Kaplansky theorem. The reflection of the properties of algebraic objects of a certain class in their endomorphism rings is a natural structural connection, the study of which is a separate investigation direction. A striking introduction to this topic was the Baer–Kaplansky theorem for torsion Abelian groups, which dates back to the middle of the last century and states that any isomorphism of endomorphism rings of two groups from this class is inevitably induced by some isomorphism of the groups themselves. Of course, it follows that if two torsion Abelian groups have isomorphic endomorphism rings, then they are isomorphic. This profound result inspired mathematicians to obtain results in the same form concerning other classes of objects. But even in the theory of Abelian groups itself, other classes were discovered for which the analogue of the Baer–Kaplansky theorem is valid. Despite the fundamental difference between the definitions of completely decomposable Abelian groups, which are direct sums of rank-one torsion-free groups, and torsion Abelian groups considered, which are direct sums of finite order cyclic groups, there is one very important common characteristic of these classes: their decompositions into indecomposable summands are determined uniquely up to isomorphism. This property is not possessed by torsion-free Abelian groups in general, whose definability by their endomorphism rings is in the focus of our attention.
@article{FPM_2022_24_1_a1,
     author = {E. A. Blagoveshchenskaya and A. V. Mikhalev},
     title = {Influence of the {Baer--Kaplansky} theorem on the development of the theory of groups, rings, and modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {31--123},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a1/}
}
TY  - JOUR
AU  - E. A. Blagoveshchenskaya
AU  - A. V. Mikhalev
TI  - Influence of the Baer--Kaplansky theorem on the development of the theory of groups, rings, and modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2022
SP  - 31
EP  - 123
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a1/
LA  - ru
ID  - FPM_2022_24_1_a1
ER  - 
%0 Journal Article
%A E. A. Blagoveshchenskaya
%A A. V. Mikhalev
%T Influence of the Baer--Kaplansky theorem on the development of the theory of groups, rings, and modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2022
%P 31-123
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a1/
%G ru
%F FPM_2022_24_1_a1
E. A. Blagoveshchenskaya; A. V. Mikhalev. Influence of the Baer--Kaplansky theorem on the development of the theory of groups, rings, and modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 31-123. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a1/

[1] Artamonov V. A., Latyshev V. N., Lineinaya algebra i vypuklaya geometriya, Faktorial Press, M., 2004

[2] Balaba I. N., Mikhalev A. V., “Izomorfizmy graduirovannykh kolets endomorfizmov graduirovannykh modulei, blizkikh k svobodnym”, Fundament. i prikl. matem., 13:5 (2007), 3–18

[3] Beidar K. I., Mikhalev A. V., “Antiizomorfizmy kolets endomorfizmov modulei i antiekvivalentnosti Mority”, UMN, 50:1(301) (1995), 187–188 | MR | Zbl

[4] Bekker I. Kh., Kozhukhov S. F., Avtomorfizmy abelevykh grupp bez krucheniya, Tomsk, 1988

[5] Blagoveschenskaya E. A., “O pryamykh razlozheniyakh abelevykh grupp bez krucheniya konechnogo ranga”, Zap. nauch. sem. LOMI AN SSSR, 132, 1983, 17–25 | MR

[6] Blagoveschenskaya E. A., “Razlozheniya abelevykh grupp konechnogo ranga bez krucheniya v pryamye summy nerazlozhimykh grupp”, Algebra i analiz, 4:2 (1992), 62–69

[7] Blagoveschenskaya E. A., “Avtomorfizmy kolets endomorfizmov blochno-zhestkikh pochti vpolne razlozhimykh grupp”, Fundament. i prikl. matem., 10:2 (2004), 23–50

[8] Blagoveschenskaya E., “Dvoistvennye svyazi mezhdu pochti vpolne razlozhimymi gruppami i ikh koltsami endomorfizmov”, Sovrem. matem. i ee pril., 13, 2004

[9] Blagoveschenskaya E., “Pryamye razlozheniya lokalno pochti vpolne razlozhimykh grupp schetnogo ranga”, Chebyshevskii sb., 6:4 (2005), 24–47

[10] Blagoveschenskaya E., “Dvoistvennaya struktura pochti vpolne razlozhimykh grupp i ikh kolets endomorfizmov”, UMN, 61:2 (2006), 159–160 | MR

[11] Blagoveschenskaya E. A., “Pochti vpolne razlozhimye gruppy i koltsa”, Fundament. i prikl. matem., 12:8 (2006), 3–27

[12] Blagoveschenskaya E., “Pochti vpolne razlozhimye gruppy s primarnym regulyatornym faktorom i ikh koltsa endomorfizmov”, Fundament. i prikl. matem., 12:2 (2006), 17–38

[13] Blagoveschenskaya E., “Teoremy realizatsii i klassifikatsii dlya odnogo klassa kolets bez krucheniya konechnogo ranga”, UMN, 61:4 (2006), 183–184 | MR

[14] Blagoveschenskaya E. A., “Opredelyaemost abelevykh grupp bez krucheniya schetnogo ranga nekotorogo klassa ikh koltsami endomorfizmov”, Fundament. i prikl. matem., 13:1 (2007), 31–43 | MR

[15] Blagoveschenskaya E. A., Pochti vpolne razlozhimye abelevy gruppy i ikh koltsa endomorfizmov, Izd-vo Politekhnicheskogo universiteta, SPb., 2009

[16] Blagoveschenskaya E. A., Yakovlev A. V., “Pryamye razlozheniyakh abelevykh grupp konechnogo ranga bez krucheniya”, Algebra i analiz, 1 (1989), 111–127

[17] Bunina E. I., Mikhalev A. V., “Elementarnaya ekvivalentnost kolets endomorfizmov abelevykh $p$-grupp”, Fundament. i prikl. matem., 10:2 (2004), 135–224 | Zbl

[18] Bunina E. I., Roizner M. A., “Elementarnaya ekvivalentnost grupp avtomorfizmov abelevykh $p$-grupp”, Fundament. i prikl. matem., 15:7 (2009), 81–112

[19] Grinshpon S. Ya., Sebeldin A. M., “Opredelyaemost periodicheskikh abelevykh grupp svoimi gruppami endomorfizmov”, Matem. zametki, 57:5 (1995), 663–669 | MR | Zbl

[20] Dzhekobson N., Teoriya kolets, Izd. inostr. lit., M., 1947

[21] Kash F., Moduli i koltsa, Mir, M., 1981

[22] Kozhukhov S. F., “Ob odnom klasse pochti vpolne razlozhimykh abelevykh grupp bez krucheniya”, Izv. vyssh. uchebn. zaved. Matematika, 10 (1983), 29–36 | MR | Zbl

[23] Krylov P. A., “Radikaly kolets endomorfizmov abelevykh grupp bez krucheniya”, Matem. sb., 95:2 (1974), 214–228 | Zbl

[24] Krylov P. A., “Abelevy gruppy bez krucheniya i ikh koltsa endomorfizmov”, Izv. vyssh. uchebn. zaved. Matematika, 11 (1979), 26–33 | Zbl

[25] Krylov P. A., “Silno odnorodnye abelevy gruppy bez krucheniya”, Sib. matem. zhurn., 24:2 (1983), 77–84 | MR | Zbl

[26] Krylov P. A., “O dvukh problemakh, kasayuschikhsya grup rasshirenii abelevykh grupp”, Matem. sb., 185:1 (1994), 75–94

[27] Krylov P. A., “Radikal Dzhekobsona koltsa endomorfizmov abelevoi gruppy”, Algebra i logika, 43:1 (2004), 60–76 | MR | Zbl

[28] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2006

[29] Krylov P. A., Tuganbaev A. A., Moduli nad oblastyami diskretnogo normirovaniya, Faktorial Press, M., 2007

[30] Krylov P. A., Tuganbaev A. A., Tsarev A. V., “Vokrug teoremy Bera–Kaplanskogo”, Itogi nauki i tekhn. Tem. obzory, 159, 2019, 46–67

[31] Kulikov L. Ya., “K teorii abelevykh grupp proizvolnoi moschnosti”, Matem. sb., 16 (1945), 129–162 | Zbl

[32] Kulikov L. Ya., “O pryamykh razlozheniyakh grupp”, Ukr. matem. zhurn., 4 (1952), 230–275 | Zbl

[33] Kulikov L. Ya., Abelevy gruppy: izbrannye trudy (sb. rabot L. Ya. Kulikova), Buki Vedi, M., 2013

[34] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR

[35] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR

[36] Maltsev A. I., “Abelevy gruppy konechnogo ranga bez krucheniya”, Matem. sb., 4:1 (1938), 45–68

[37] Mikhalev A. V., “Izomorfizmy kolets endomorfizmov modulei, blizkikh k svobodnym”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1989, no. 4, 20–27 | Zbl

[38] Mikhalev A. V., Mishina A. P., “Beskonechnye abelevy gruppy: metody i rezultaty”, Fundament. i prikl. matem., 1:2 (1995), 319–375 | MR | Zbl

[39] Sebeldin A. M., “Usloviya izomorfizma vpolne razlozhimykh abelevykh grupp bez krucheniya s izomorfnymi koltsami endomorfizmov”, Matem. zametki, 11:4 (1972), 403–408 | MR | Zbl

[40] Sebeldin A. M., “Opredelyaemost vektornykh grupp polugruppami endomorfizmov”, Algebra i logika, 26:4 (1994), 422–428

[41] Tuganbaev A. A., “Koltsa endomorfizmov strogo nerazlozhimykh modulei”, UMN, 53:2 (1998), 207–208 | Zbl

[42] Fomin A. A., “Dvoistvennost v nekotorykh klassakh abelevykh grupp bez krucheniya konechnogo ranga”, Sib. matem. zhurn., 27 (1986), 117–127 | Zbl

[43] Fomin A. A., “Invarianty i dvoistvennost v nekotorykh klassakh abelevykh grupp bez krucheniya konechnogo ranga”, Algebra i logika, 26:1 (1987), 63–83 | MR

[44] Arnold D., Finite-Rank Torsion-Free Abelian Groups and Rings, Lect. Notes Math., 931, Springer, Berlin, 1982 | DOI | MR | Zbl

[45] Arnold D., “Endomorphism rings and submodules of finite rank torsion-free Abelian groups”, Rocky Mountain J. Math., 32:2 (1982), 241–256 | MR

[46] Arnold D. M., “A duality for quotient divisible Abelian groups of finite rank”, Pacific J. Math., 42 (1972), 11–15 | DOI | MR | Zbl

[47] Arnold D. M., Lady L., “Endomorphism rings and direct sums of torsion-free Abelian groups”, Trans. Amer. Math. Soc., 211 (1975), 225–237 | DOI | MR | Zbl

[48] Arnold D. M., Vinsonhaler C., “Pure subgroups of finite rank completely decomposable groups. II”, Abelian Group Theory, Lect. Notes Math., 1006, Springer, Berlin, 1984, 97–143 | DOI | MR

[49] Arnold D. M., Vinsonhaler C., “Duality and invariants for Butler groups”, Pacific J. Math., 148 (1991), 1–10 | DOI | MR | Zbl

[50] Baer R., “Automorphism rings of primary Abelian operator groups”, Ann. Math., 44 (1943), 192–227 | DOI | MR | Zbl

[51] Baer R., Linear algebra and projective geometry, Columbia University, New York, 1952 | MR

[52] Baer R., Linear algebra and projective geometry, v. II, Columbia University, New York, 1966 | MR

[53] Benabdallah R., Mutzbauer O., “On direct decompositions of torsion-free Abelian groups of rank $4$”, Abelian Group Theory, Lect. Notes Math., 874, Springer, Berlin, 1981, 62–69 | DOI | MR

[54] Blagoveshchenskaya E., “Direct decompositions of almost completely decomposable Abelian groups”, Abelian Groups and Modules, Lect. Notes Pure Appl. Math., 182, Marcel Dekker, New York, 1996, 163–179 | MR | Zbl

[55] Blagoveshchenskaya E., “Classification of a class of almost completely decomposable groups”, Rings, Modules, Algebras and Abelian Groups, Lect. Notes Pure Appl. Math., 236, Marcel Dekker, New York, 2004, 45–54 | MR | Zbl

[56] Blagoveshchenskaya E., “Classification of a class of finite rank Butler groups”, Models, Modules and Abelian Groups, 2008, 135–146 | DOI | MR | Zbl

[57] Blagoveshchenskaya E., “Endomorphism rings of rigid almost completely decomposable Abelian groups”, J. Math. Sci., 197:4 (2014), 467–478 | DOI | MR | Zbl

[58] Blagoveshchenskaya E., “Direct decompositions of torsion-free Abelian groups”, Lobachevskii J. Math., 41:9 (2020), 1640–1646 | DOI | MR | Zbl

[59] Blagoveshchenskaya E., Göbel R., “Classification and direct decompositions of some Butler groups of countable rank”, Commun. Algebra, 30:7 (2002), 3403–3427 | DOI | MR | Zbl

[60] Blagoveshchenskaya E., Göbel R., Strüngmann L., “Classification of some Butler groups of infinite rank”, J. Algebra, 380 (2013), 1–17 | DOI | MR | Zbl

[61] Blagoveshchenskaya E., Ivanov G., Schultz P., “The Baer–Kaplansky theorem for almost completely decomposable groups”, Contemp. Math., 273, 2001, 85–93 | DOI | MR | Zbl

[62] Blagoveshchenskaya E., Kunetz D., “Direct decomposition theory of torsion-free Abelian groups of finite rank: graph method”, Lobachevskii J. Math., 39:1 (2018), 29–34 | DOI | MR | Zbl

[63] Blagoveshchenskaya E., Mader A., “Decompositions of almost completely decomposable Abelian groups”, Contemp. Math., 171, 1994, 21–36 | DOI | MR | Zbl

[64] Blagoveshchenskaya E., Strüngmann L., “Near-isomorphism for a class of infinite rank torsion-free Abelian groups”, Commun. Algebra, 35 (2007), 1–18 | DOI | MR

[65] Blagoveshchenskaya E., Strüngmann L. H., “Direct decomposition theory under near-isomorphism for a class of infinite rank torsion-free Abelian groups”, J. Group Theory, 20:2 (2017), 325–346 | DOI | MR | Zbl

[66] Bowshell R., Schultz P., “Unital rings whose additive endomorphisms commute”, Math. Ann., 228 (1977), 197–214 | DOI | MR | Zbl

[67] Breaz S., “A Baer — Kaplansky theorem for modules over principal ideal domains”, J. Commut. Algebra, 7:1 (2015), 1–7 | DOI | MR | Zbl

[68] Breaz S., Calugareanu G., “Every Abelian group is determined by a subgroup lattice”, Stud. Sci. Math. Hungar., 45 (2008), 135–137 | MR | Zbl

[69] Burkhardt R., “On a special class of almost completely decomposable groups. I”, Abelian Groups and Modules, Proc. of the Udine Conf., CISM Courses Lect. Notes, 287, 1984, 141–150 | MR | Zbl

[70] Butler M. C. R., “A class of torsion-free Abelian groups of finite rank”, Proc. London Math. Soc., 40 (1965), 680–698 | DOI | MR

[71] Corner A. L. S., “A note on rank and decomposition of torsion-free Abelian groups”, Proc. Cambridge Philos. Soc., 57:2 (1961), 230–233 | DOI | MR | Zbl

[72] Corner A. L. S., Goldsmith B., Wallutis S. L., “Anti-isomorphisms and the failure of duality”, Models, Modules and Abelian groups, In Memory of A. L. S. Corner, Walter de Gruyter, 2008, 315–323 | DOI | MR | Zbl

[73] Crivei S., Tütüncü D. K., “Baer–Kaplansky classes in Grothendieck categories and applications”, Mediterranean J. Math., 16 (2019), 90 | DOI | MR | Zbl

[74] Crivei S., Tütüncü D. K., Tribak R., “Baer–Kaplansky classes in categories: transfer via functors”, Commun. Algebra, 48:7 (2020), 1–13 | DOI | MR

[75] Faticoni T., “Categories of modules over endomorphism rings”, Mem. Amer. Math. Soc., 103, no. 492, 1993, 140–159 | MR

[76] Faticoni T., Schultz P., “Direct decompositions of ACD groups with primary regulating index”, Abelian Groups and Modules, Lect. Notes Pure Appl. Math., 182, Marcel Dekker, New York, 1996, 233–241 | MR | Zbl

[77] Files S. T., “Endomorphism algebras of modules with distinguished torsion-free elements”, J. Algebra, 178 (1995), 264–276 | DOI | MR | Zbl

[78] Files S., Wickless W., “The Baer–Kaplansky theorem for a class of global mixed Abelian groups”, Rocky Mountain J. Math., 26:2 (1996), 593–613 | DOI | MR | Zbl

[79] Flagg M., “A Jacobson radical isomorphism theorem for torsion-free modules”, Models, Modules and Abelian Groups, Walter de Gruyter, Berlin, 2008, 309–314 | DOI | MR | Zbl

[80] Flagg M., “The role of the Jacobson radical in isomorphism theorems”, Contemp. Math., 576, 2012, 77–88 | DOI | MR | Zbl

[81] Flagg M., “The Jacobson radical's role in isomorphism theorems for $p$-adic modules extends to topological isomorphism”, Groups, Modules, and Model Theory—Surveys and Recent Developments, Springer, Berlin, 2017, 285–300 | DOI | MR | Zbl

[82] Fomin A. A., “The category of quasi-homomorphisms of Abelian torsion-free groups of finite rank”, Contemp. Math., 131, 1992, 91–111 | DOI | MR | Zbl

[83] Fomin A. A., “Abelian groups in Russia”, Rocky Mountain J. Math., 32:4 (2002), 1161–1180 | DOI | MR | Zbl

[84] Fomin A., Wickless W., “Categories of mixed and torsion-free Abelian groups”, Abelian Groups and Modules, Kluwer, Boston, 1995, 185–192 | DOI | MR | Zbl

[85] Fomin A. A., Wickless W. J., “Quotient divisible Abelian groups”, Proc. Amer. Math. Soc., 126:1 (1998), 45–52 | DOI | MR | Zbl

[86] Fuchs L., Infinite Abelian Groups, v. 1, 2, Academic Press, 1970 | MR | Zbl

[87] Fuchs L., “Reinhold Baer and his influence on the theory of Abelian groups”, Illinois J. Math., 47 (2003), 207–222 | DOI | MR | Zbl

[88] Fuchs L., Abelian Groups, Springer, Berlin, 2015 | MR | Zbl

[89] Glaz S., Wickless W., “Regular and principal projective endomorphism rings of mixed Abelian groups”, Commun. Algebra, 22:4 (1994), 1161–1176 | DOI | MR | Zbl

[90] Goldsmith B., “Endomorphism rings of torsion-free modules over a complete discrete valuation ring”, J. London Math. Soc., 18:3 (1978), 464–471 | DOI | MR | Zbl

[91] Goldsmith B., Göbel R., “On almost-free modules over complete discrete valuation rings”, Rend. Sem. Mat. Univ. Padova, 86 (1991), 75–87 | MR | Zbl

[92] Hassler W., Wiegand R., “Direct sum cancellation for modules over one-dimensional rings”, J. Algebra, 283 (2005), 93–124 | DOI | MR | Zbl

[93] Hausen J., Johnson J. A., “Determining Abelian $p$-groups by the Jacobson radical of their endomorphism rings”, J. Algebra, 174:1 (1995), 217–224 | DOI | MR | Zbl

[94] Hausen J., Praeger C. E., Schultz P., “Most Abelian $p$-groups are determined by the Jacobson radical of their endomorphism rings”, Math. Z., 216:3 (1994), 431–436 | DOI | MR | Zbl

[95] Ivanov G., “Generalizing the Baer–Kaplansky theorem”, J. Pure Appl. Algebra, 133 (1998), 107–115 | DOI | MR | Zbl

[96] Ivanov G., Vámos P., “A characterization of FGC rings”, Rocky Mountain J. Math., 32 (2002), 1485–1492 | DOI | MR | Zbl

[97] Jonsson B., “On direct decompositions of torsion-free Abelian groups”, Math. Scand., 5 (1957), 230–235 | DOI | MR | Zbl

[98] Jonsson B., “On direct decompositions of torsion-free Abelian groups”, Math. Scand., 7 (1959), 361–371 | DOI | MR

[99] Kaplansky I., Infinite Abelian Groups, Univ. Michigan Press, Ann Arbor, 1954 | MR | Zbl

[100] Koppelberg S., Handbook on Boolean Algebras, North-Holland, Amsterdam, 1989 | MR

[101] Kurosh A. G., “Primitive torsionsfreie abelsche Gruppen vom endlichen Range”, Ann. Math., 38 (1937), 175–203 | DOI | MR

[102] Lady L., “Summands of finite rank torsion-free Abelian groups”, J. Algebra, 32 (1974), 51–52 | DOI | MR | Zbl

[103] Lady L., “Almost completely decomposable torsion-free Abelian groups”, Proc. Amer. Math. Soc., 45 (1974), 41–47 | DOI | MR | Zbl

[104] Lady L., “Nearly isomorphic torsion-free Abelian groups”, J. Algebra, 35 (1975), 235–238 | DOI | MR | Zbl

[105] Leptin H., “Abelsche $p$-Gruppen und ihre Automorphismengruppen”, Math. Z., 73 (1960), 235–253 | DOI | MR | Zbl

[106] Liebert W., “Endomorphism rings of free modules over principal ideal domains”, Duke Math. J., 41 (1974), 323–328 | DOI | MR | Zbl

[107] Liebert W., “Isomorphic automorphism groups of primary Abelian groups”, Abelian Group Theory, Gordon and Breach, 1987, 9–31 | MR

[108] Mader A., “Almost completely decomposable torsion-free Abelian groups”, Abelian Groups and Modules, Math. Its Appl., 343, Kluwer Academic, Dordrecht, 1995, 343–366 | MR | Zbl

[109] Mader A., Almost Completely Decomposable Abelian groups, Algebra, Logic and Applications, 13, Gordon and Breach, Amsterdam, 2000 | MR

[110] Mader A., Schultz P., “Endomorphism rings and automorphism groups of almost completely decomposable groups”, Commun. Algebra, 28 (2000), 51–68 | DOI | MR | Zbl

[111] Mader A., Strüngmann L., “Bounded essential extensions of completely decomposable Abelian groups”, J. Algebra, 229 (2000), 205–233 | DOI | MR | Zbl

[112] May W., “Isomorphism of endomorphism algebras over complete discrete valuation rings”, Math. Z., 204 (1990), 485–499 | DOI | MR | Zbl

[113] May W., Toubassi E., “Endomorphisms of Abelian groups and the theorem of Baer and Kaplansky”, J. Algebra, 43 (1976), 1–13 | DOI | MR | Zbl

[114] Mikhalev A. V., “Isomorphisms and antiisomorphisms of endomorphism rings of modules”, First Int. Tainan-Moscow Algebra Workshop, 1996, 69–122 | MR | Zbl

[115] O'Meara K. C., Vinsonhaler C., “Separative cancellation and multiple isomorphism in torsion-free Abelian groups”, J. Algebra, 221 (1999), 536–550 | DOI | MR

[116] Reid J., “Some matrix rings associated with ACD groups”, Abelian Groups and Modules, Int. Conf. (Dublin), 1998, 191–198 | MR

[117] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Aust. Math. Soc., 15 (1973), 60–69 | DOI | MR | Zbl

[118] Schultz P., “When is an Abelian $p$-group determined by the Jacobson radical of its endomorphism ring”, Contemp. Math., 171, 1994, 385–396 | DOI | MR | Zbl

[119] Schultz P., Sebeldin A., Sylla A. L., “Determination of torsion Abelian groups by their automorphism groups”, Bull. Aust. Math. Soc., 67 (2003), 511–519 | DOI | MR | Zbl

[120] Stelzer J., “A cancellation criterion for finite-rank torsion-free Abelian groups”, Proc. Amer. Math. Soc., 94 (1985), 363–368 | DOI | MR | Zbl

[121] Susanto H., Irawati S., Hidayah I. N., Irawati I., “Isomorphism between endomorphism rings of modules over a semi simple ring”, J. Physics: Conf. Series, 1245 (2019), 012050 | DOI | MR

[122] Thomas S., “The classification problem for torsion-free Abelian groups of finite rank”, J. Amer. Math. Soc., 16:1 (2003), 233–258 | DOI | MR | Zbl

[123] Wolfson K., “Anti-isomorphisms of endomorphism rings of locally free modules”, Math. Z., 202 (1989), 151–159 | DOI | MR | Zbl

[124] Wolfson K., “Isomorphisms between endomorphism rings of modules”, Proc. Amer. Math. Soc., 123 (1995), 1971–1973 | DOI | MR | Zbl

[125] Wolfson K. G., “Isomorphisms of the endomorphism rings of torsion-free modules”, Proc. Amer. Math. Soc., 14 (1963), 589–594 | DOI | MR | Zbl