Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2022_24_1_a1, author = {E. A. Blagoveshchenskaya and A. V. Mikhalev}, title = {Influence of the {Baer--Kaplansky} theorem on the development of the theory of groups, rings, and modules}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {31--123}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a1/} }
TY - JOUR AU - E. A. Blagoveshchenskaya AU - A. V. Mikhalev TI - Influence of the Baer--Kaplansky theorem on the development of the theory of groups, rings, and modules JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2022 SP - 31 EP - 123 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a1/ LA - ru ID - FPM_2022_24_1_a1 ER -
%0 Journal Article %A E. A. Blagoveshchenskaya %A A. V. Mikhalev %T Influence of the Baer--Kaplansky theorem on the development of the theory of groups, rings, and modules %J Fundamentalʹnaâ i prikladnaâ matematika %D 2022 %P 31-123 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a1/ %G ru %F FPM_2022_24_1_a1
E. A. Blagoveshchenskaya; A. V. Mikhalev. Influence of the Baer--Kaplansky theorem on the development of the theory of groups, rings, and modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 31-123. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a1/
[1] Artamonov V. A., Latyshev V. N., Lineinaya algebra i vypuklaya geometriya, Faktorial Press, M., 2004
[2] Balaba I. N., Mikhalev A. V., “Izomorfizmy graduirovannykh kolets endomorfizmov graduirovannykh modulei, blizkikh k svobodnym”, Fundament. i prikl. matem., 13:5 (2007), 3–18
[3] Beidar K. I., Mikhalev A. V., “Antiizomorfizmy kolets endomorfizmov modulei i antiekvivalentnosti Mority”, UMN, 50:1(301) (1995), 187–188 | MR | Zbl
[4] Bekker I. Kh., Kozhukhov S. F., Avtomorfizmy abelevykh grupp bez krucheniya, Tomsk, 1988
[5] Blagoveschenskaya E. A., “O pryamykh razlozheniyakh abelevykh grupp bez krucheniya konechnogo ranga”, Zap. nauch. sem. LOMI AN SSSR, 132, 1983, 17–25 | MR
[6] Blagoveschenskaya E. A., “Razlozheniya abelevykh grupp konechnogo ranga bez krucheniya v pryamye summy nerazlozhimykh grupp”, Algebra i analiz, 4:2 (1992), 62–69
[7] Blagoveschenskaya E. A., “Avtomorfizmy kolets endomorfizmov blochno-zhestkikh pochti vpolne razlozhimykh grupp”, Fundament. i prikl. matem., 10:2 (2004), 23–50
[8] Blagoveschenskaya E., “Dvoistvennye svyazi mezhdu pochti vpolne razlozhimymi gruppami i ikh koltsami endomorfizmov”, Sovrem. matem. i ee pril., 13, 2004
[9] Blagoveschenskaya E., “Pryamye razlozheniya lokalno pochti vpolne razlozhimykh grupp schetnogo ranga”, Chebyshevskii sb., 6:4 (2005), 24–47
[10] Blagoveschenskaya E., “Dvoistvennaya struktura pochti vpolne razlozhimykh grupp i ikh kolets endomorfizmov”, UMN, 61:2 (2006), 159–160 | MR
[11] Blagoveschenskaya E. A., “Pochti vpolne razlozhimye gruppy i koltsa”, Fundament. i prikl. matem., 12:8 (2006), 3–27
[12] Blagoveschenskaya E., “Pochti vpolne razlozhimye gruppy s primarnym regulyatornym faktorom i ikh koltsa endomorfizmov”, Fundament. i prikl. matem., 12:2 (2006), 17–38
[13] Blagoveschenskaya E., “Teoremy realizatsii i klassifikatsii dlya odnogo klassa kolets bez krucheniya konechnogo ranga”, UMN, 61:4 (2006), 183–184 | MR
[14] Blagoveschenskaya E. A., “Opredelyaemost abelevykh grupp bez krucheniya schetnogo ranga nekotorogo klassa ikh koltsami endomorfizmov”, Fundament. i prikl. matem., 13:1 (2007), 31–43 | MR
[15] Blagoveschenskaya E. A., Pochti vpolne razlozhimye abelevy gruppy i ikh koltsa endomorfizmov, Izd-vo Politekhnicheskogo universiteta, SPb., 2009
[16] Blagoveschenskaya E. A., Yakovlev A. V., “Pryamye razlozheniyakh abelevykh grupp konechnogo ranga bez krucheniya”, Algebra i analiz, 1 (1989), 111–127
[17] Bunina E. I., Mikhalev A. V., “Elementarnaya ekvivalentnost kolets endomorfizmov abelevykh $p$-grupp”, Fundament. i prikl. matem., 10:2 (2004), 135–224 | Zbl
[18] Bunina E. I., Roizner M. A., “Elementarnaya ekvivalentnost grupp avtomorfizmov abelevykh $p$-grupp”, Fundament. i prikl. matem., 15:7 (2009), 81–112
[19] Grinshpon S. Ya., Sebeldin A. M., “Opredelyaemost periodicheskikh abelevykh grupp svoimi gruppami endomorfizmov”, Matem. zametki, 57:5 (1995), 663–669 | MR | Zbl
[20] Dzhekobson N., Teoriya kolets, Izd. inostr. lit., M., 1947
[21] Kash F., Moduli i koltsa, Mir, M., 1981
[22] Kozhukhov S. F., “Ob odnom klasse pochti vpolne razlozhimykh abelevykh grupp bez krucheniya”, Izv. vyssh. uchebn. zaved. Matematika, 10 (1983), 29–36 | MR | Zbl
[23] Krylov P. A., “Radikaly kolets endomorfizmov abelevykh grupp bez krucheniya”, Matem. sb., 95:2 (1974), 214–228 | Zbl
[24] Krylov P. A., “Abelevy gruppy bez krucheniya i ikh koltsa endomorfizmov”, Izv. vyssh. uchebn. zaved. Matematika, 11 (1979), 26–33 | Zbl
[25] Krylov P. A., “Silno odnorodnye abelevy gruppy bez krucheniya”, Sib. matem. zhurn., 24:2 (1983), 77–84 | MR | Zbl
[26] Krylov P. A., “O dvukh problemakh, kasayuschikhsya grup rasshirenii abelevykh grupp”, Matem. sb., 185:1 (1994), 75–94
[27] Krylov P. A., “Radikal Dzhekobsona koltsa endomorfizmov abelevoi gruppy”, Algebra i logika, 43:1 (2004), 60–76 | MR | Zbl
[28] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2006
[29] Krylov P. A., Tuganbaev A. A., Moduli nad oblastyami diskretnogo normirovaniya, Faktorial Press, M., 2007
[30] Krylov P. A., Tuganbaev A. A., Tsarev A. V., “Vokrug teoremy Bera–Kaplanskogo”, Itogi nauki i tekhn. Tem. obzory, 159, 2019, 46–67
[31] Kulikov L. Ya., “K teorii abelevykh grupp proizvolnoi moschnosti”, Matem. sb., 16 (1945), 129–162 | Zbl
[32] Kulikov L. Ya., “O pryamykh razlozheniyakh grupp”, Ukr. matem. zhurn., 4 (1952), 230–275 | Zbl
[33] Kulikov L. Ya., Abelevy gruppy: izbrannye trudy (sb. rabot L. Ya. Kulikova), Buki Vedi, M., 2013
[34] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR
[35] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR
[36] Maltsev A. I., “Abelevy gruppy konechnogo ranga bez krucheniya”, Matem. sb., 4:1 (1938), 45–68
[37] Mikhalev A. V., “Izomorfizmy kolets endomorfizmov modulei, blizkikh k svobodnym”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1989, no. 4, 20–27 | Zbl
[38] Mikhalev A. V., Mishina A. P., “Beskonechnye abelevy gruppy: metody i rezultaty”, Fundament. i prikl. matem., 1:2 (1995), 319–375 | MR | Zbl
[39] Sebeldin A. M., “Usloviya izomorfizma vpolne razlozhimykh abelevykh grupp bez krucheniya s izomorfnymi koltsami endomorfizmov”, Matem. zametki, 11:4 (1972), 403–408 | MR | Zbl
[40] Sebeldin A. M., “Opredelyaemost vektornykh grupp polugruppami endomorfizmov”, Algebra i logika, 26:4 (1994), 422–428
[41] Tuganbaev A. A., “Koltsa endomorfizmov strogo nerazlozhimykh modulei”, UMN, 53:2 (1998), 207–208 | Zbl
[42] Fomin A. A., “Dvoistvennost v nekotorykh klassakh abelevykh grupp bez krucheniya konechnogo ranga”, Sib. matem. zhurn., 27 (1986), 117–127 | Zbl
[43] Fomin A. A., “Invarianty i dvoistvennost v nekotorykh klassakh abelevykh grupp bez krucheniya konechnogo ranga”, Algebra i logika, 26:1 (1987), 63–83 | MR
[44] Arnold D., Finite-Rank Torsion-Free Abelian Groups and Rings, Lect. Notes Math., 931, Springer, Berlin, 1982 | DOI | MR | Zbl
[45] Arnold D., “Endomorphism rings and submodules of finite rank torsion-free Abelian groups”, Rocky Mountain J. Math., 32:2 (1982), 241–256 | MR
[46] Arnold D. M., “A duality for quotient divisible Abelian groups of finite rank”, Pacific J. Math., 42 (1972), 11–15 | DOI | MR | Zbl
[47] Arnold D. M., Lady L., “Endomorphism rings and direct sums of torsion-free Abelian groups”, Trans. Amer. Math. Soc., 211 (1975), 225–237 | DOI | MR | Zbl
[48] Arnold D. M., Vinsonhaler C., “Pure subgroups of finite rank completely decomposable groups. II”, Abelian Group Theory, Lect. Notes Math., 1006, Springer, Berlin, 1984, 97–143 | DOI | MR
[49] Arnold D. M., Vinsonhaler C., “Duality and invariants for Butler groups”, Pacific J. Math., 148 (1991), 1–10 | DOI | MR | Zbl
[50] Baer R., “Automorphism rings of primary Abelian operator groups”, Ann. Math., 44 (1943), 192–227 | DOI | MR | Zbl
[51] Baer R., Linear algebra and projective geometry, Columbia University, New York, 1952 | MR
[52] Baer R., Linear algebra and projective geometry, v. II, Columbia University, New York, 1966 | MR
[53] Benabdallah R., Mutzbauer O., “On direct decompositions of torsion-free Abelian groups of rank $4$”, Abelian Group Theory, Lect. Notes Math., 874, Springer, Berlin, 1981, 62–69 | DOI | MR
[54] Blagoveshchenskaya E., “Direct decompositions of almost completely decomposable Abelian groups”, Abelian Groups and Modules, Lect. Notes Pure Appl. Math., 182, Marcel Dekker, New York, 1996, 163–179 | MR | Zbl
[55] Blagoveshchenskaya E., “Classification of a class of almost completely decomposable groups”, Rings, Modules, Algebras and Abelian Groups, Lect. Notes Pure Appl. Math., 236, Marcel Dekker, New York, 2004, 45–54 | MR | Zbl
[56] Blagoveshchenskaya E., “Classification of a class of finite rank Butler groups”, Models, Modules and Abelian Groups, 2008, 135–146 | DOI | MR | Zbl
[57] Blagoveshchenskaya E., “Endomorphism rings of rigid almost completely decomposable Abelian groups”, J. Math. Sci., 197:4 (2014), 467–478 | DOI | MR | Zbl
[58] Blagoveshchenskaya E., “Direct decompositions of torsion-free Abelian groups”, Lobachevskii J. Math., 41:9 (2020), 1640–1646 | DOI | MR | Zbl
[59] Blagoveshchenskaya E., Göbel R., “Classification and direct decompositions of some Butler groups of countable rank”, Commun. Algebra, 30:7 (2002), 3403–3427 | DOI | MR | Zbl
[60] Blagoveshchenskaya E., Göbel R., Strüngmann L., “Classification of some Butler groups of infinite rank”, J. Algebra, 380 (2013), 1–17 | DOI | MR | Zbl
[61] Blagoveshchenskaya E., Ivanov G., Schultz P., “The Baer–Kaplansky theorem for almost completely decomposable groups”, Contemp. Math., 273, 2001, 85–93 | DOI | MR | Zbl
[62] Blagoveshchenskaya E., Kunetz D., “Direct decomposition theory of torsion-free Abelian groups of finite rank: graph method”, Lobachevskii J. Math., 39:1 (2018), 29–34 | DOI | MR | Zbl
[63] Blagoveshchenskaya E., Mader A., “Decompositions of almost completely decomposable Abelian groups”, Contemp. Math., 171, 1994, 21–36 | DOI | MR | Zbl
[64] Blagoveshchenskaya E., Strüngmann L., “Near-isomorphism for a class of infinite rank torsion-free Abelian groups”, Commun. Algebra, 35 (2007), 1–18 | DOI | MR
[65] Blagoveshchenskaya E., Strüngmann L. H., “Direct decomposition theory under near-isomorphism for a class of infinite rank torsion-free Abelian groups”, J. Group Theory, 20:2 (2017), 325–346 | DOI | MR | Zbl
[66] Bowshell R., Schultz P., “Unital rings whose additive endomorphisms commute”, Math. Ann., 228 (1977), 197–214 | DOI | MR | Zbl
[67] Breaz S., “A Baer — Kaplansky theorem for modules over principal ideal domains”, J. Commut. Algebra, 7:1 (2015), 1–7 | DOI | MR | Zbl
[68] Breaz S., Calugareanu G., “Every Abelian group is determined by a subgroup lattice”, Stud. Sci. Math. Hungar., 45 (2008), 135–137 | MR | Zbl
[69] Burkhardt R., “On a special class of almost completely decomposable groups. I”, Abelian Groups and Modules, Proc. of the Udine Conf., CISM Courses Lect. Notes, 287, 1984, 141–150 | MR | Zbl
[70] Butler M. C. R., “A class of torsion-free Abelian groups of finite rank”, Proc. London Math. Soc., 40 (1965), 680–698 | DOI | MR
[71] Corner A. L. S., “A note on rank and decomposition of torsion-free Abelian groups”, Proc. Cambridge Philos. Soc., 57:2 (1961), 230–233 | DOI | MR | Zbl
[72] Corner A. L. S., Goldsmith B., Wallutis S. L., “Anti-isomorphisms and the failure of duality”, Models, Modules and Abelian groups, In Memory of A. L. S. Corner, Walter de Gruyter, 2008, 315–323 | DOI | MR | Zbl
[73] Crivei S., Tütüncü D. K., “Baer–Kaplansky classes in Grothendieck categories and applications”, Mediterranean J. Math., 16 (2019), 90 | DOI | MR | Zbl
[74] Crivei S., Tütüncü D. K., Tribak R., “Baer–Kaplansky classes in categories: transfer via functors”, Commun. Algebra, 48:7 (2020), 1–13 | DOI | MR
[75] Faticoni T., “Categories of modules over endomorphism rings”, Mem. Amer. Math. Soc., 103, no. 492, 1993, 140–159 | MR
[76] Faticoni T., Schultz P., “Direct decompositions of ACD groups with primary regulating index”, Abelian Groups and Modules, Lect. Notes Pure Appl. Math., 182, Marcel Dekker, New York, 1996, 233–241 | MR | Zbl
[77] Files S. T., “Endomorphism algebras of modules with distinguished torsion-free elements”, J. Algebra, 178 (1995), 264–276 | DOI | MR | Zbl
[78] Files S., Wickless W., “The Baer–Kaplansky theorem for a class of global mixed Abelian groups”, Rocky Mountain J. Math., 26:2 (1996), 593–613 | DOI | MR | Zbl
[79] Flagg M., “A Jacobson radical isomorphism theorem for torsion-free modules”, Models, Modules and Abelian Groups, Walter de Gruyter, Berlin, 2008, 309–314 | DOI | MR | Zbl
[80] Flagg M., “The role of the Jacobson radical in isomorphism theorems”, Contemp. Math., 576, 2012, 77–88 | DOI | MR | Zbl
[81] Flagg M., “The Jacobson radical's role in isomorphism theorems for $p$-adic modules extends to topological isomorphism”, Groups, Modules, and Model Theory—Surveys and Recent Developments, Springer, Berlin, 2017, 285–300 | DOI | MR | Zbl
[82] Fomin A. A., “The category of quasi-homomorphisms of Abelian torsion-free groups of finite rank”, Contemp. Math., 131, 1992, 91–111 | DOI | MR | Zbl
[83] Fomin A. A., “Abelian groups in Russia”, Rocky Mountain J. Math., 32:4 (2002), 1161–1180 | DOI | MR | Zbl
[84] Fomin A., Wickless W., “Categories of mixed and torsion-free Abelian groups”, Abelian Groups and Modules, Kluwer, Boston, 1995, 185–192 | DOI | MR | Zbl
[85] Fomin A. A., Wickless W. J., “Quotient divisible Abelian groups”, Proc. Amer. Math. Soc., 126:1 (1998), 45–52 | DOI | MR | Zbl
[86] Fuchs L., Infinite Abelian Groups, v. 1, 2, Academic Press, 1970 | MR | Zbl
[87] Fuchs L., “Reinhold Baer and his influence on the theory of Abelian groups”, Illinois J. Math., 47 (2003), 207–222 | DOI | MR | Zbl
[88] Fuchs L., Abelian Groups, Springer, Berlin, 2015 | MR | Zbl
[89] Glaz S., Wickless W., “Regular and principal projective endomorphism rings of mixed Abelian groups”, Commun. Algebra, 22:4 (1994), 1161–1176 | DOI | MR | Zbl
[90] Goldsmith B., “Endomorphism rings of torsion-free modules over a complete discrete valuation ring”, J. London Math. Soc., 18:3 (1978), 464–471 | DOI | MR | Zbl
[91] Goldsmith B., Göbel R., “On almost-free modules over complete discrete valuation rings”, Rend. Sem. Mat. Univ. Padova, 86 (1991), 75–87 | MR | Zbl
[92] Hassler W., Wiegand R., “Direct sum cancellation for modules over one-dimensional rings”, J. Algebra, 283 (2005), 93–124 | DOI | MR | Zbl
[93] Hausen J., Johnson J. A., “Determining Abelian $p$-groups by the Jacobson radical of their endomorphism rings”, J. Algebra, 174:1 (1995), 217–224 | DOI | MR | Zbl
[94] Hausen J., Praeger C. E., Schultz P., “Most Abelian $p$-groups are determined by the Jacobson radical of their endomorphism rings”, Math. Z., 216:3 (1994), 431–436 | DOI | MR | Zbl
[95] Ivanov G., “Generalizing the Baer–Kaplansky theorem”, J. Pure Appl. Algebra, 133 (1998), 107–115 | DOI | MR | Zbl
[96] Ivanov G., Vámos P., “A characterization of FGC rings”, Rocky Mountain J. Math., 32 (2002), 1485–1492 | DOI | MR | Zbl
[97] Jonsson B., “On direct decompositions of torsion-free Abelian groups”, Math. Scand., 5 (1957), 230–235 | DOI | MR | Zbl
[98] Jonsson B., “On direct decompositions of torsion-free Abelian groups”, Math. Scand., 7 (1959), 361–371 | DOI | MR
[99] Kaplansky I., Infinite Abelian Groups, Univ. Michigan Press, Ann Arbor, 1954 | MR | Zbl
[100] Koppelberg S., Handbook on Boolean Algebras, North-Holland, Amsterdam, 1989 | MR
[101] Kurosh A. G., “Primitive torsionsfreie abelsche Gruppen vom endlichen Range”, Ann. Math., 38 (1937), 175–203 | DOI | MR
[102] Lady L., “Summands of finite rank torsion-free Abelian groups”, J. Algebra, 32 (1974), 51–52 | DOI | MR | Zbl
[103] Lady L., “Almost completely decomposable torsion-free Abelian groups”, Proc. Amer. Math. Soc., 45 (1974), 41–47 | DOI | MR | Zbl
[104] Lady L., “Nearly isomorphic torsion-free Abelian groups”, J. Algebra, 35 (1975), 235–238 | DOI | MR | Zbl
[105] Leptin H., “Abelsche $p$-Gruppen und ihre Automorphismengruppen”, Math. Z., 73 (1960), 235–253 | DOI | MR | Zbl
[106] Liebert W., “Endomorphism rings of free modules over principal ideal domains”, Duke Math. J., 41 (1974), 323–328 | DOI | MR | Zbl
[107] Liebert W., “Isomorphic automorphism groups of primary Abelian groups”, Abelian Group Theory, Gordon and Breach, 1987, 9–31 | MR
[108] Mader A., “Almost completely decomposable torsion-free Abelian groups”, Abelian Groups and Modules, Math. Its Appl., 343, Kluwer Academic, Dordrecht, 1995, 343–366 | MR | Zbl
[109] Mader A., Almost Completely Decomposable Abelian groups, Algebra, Logic and Applications, 13, Gordon and Breach, Amsterdam, 2000 | MR
[110] Mader A., Schultz P., “Endomorphism rings and automorphism groups of almost completely decomposable groups”, Commun. Algebra, 28 (2000), 51–68 | DOI | MR | Zbl
[111] Mader A., Strüngmann L., “Bounded essential extensions of completely decomposable Abelian groups”, J. Algebra, 229 (2000), 205–233 | DOI | MR | Zbl
[112] May W., “Isomorphism of endomorphism algebras over complete discrete valuation rings”, Math. Z., 204 (1990), 485–499 | DOI | MR | Zbl
[113] May W., Toubassi E., “Endomorphisms of Abelian groups and the theorem of Baer and Kaplansky”, J. Algebra, 43 (1976), 1–13 | DOI | MR | Zbl
[114] Mikhalev A. V., “Isomorphisms and antiisomorphisms of endomorphism rings of modules”, First Int. Tainan-Moscow Algebra Workshop, 1996, 69–122 | MR | Zbl
[115] O'Meara K. C., Vinsonhaler C., “Separative cancellation and multiple isomorphism in torsion-free Abelian groups”, J. Algebra, 221 (1999), 536–550 | DOI | MR
[116] Reid J., “Some matrix rings associated with ACD groups”, Abelian Groups and Modules, Int. Conf. (Dublin), 1998, 191–198 | MR
[117] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Aust. Math. Soc., 15 (1973), 60–69 | DOI | MR | Zbl
[118] Schultz P., “When is an Abelian $p$-group determined by the Jacobson radical of its endomorphism ring”, Contemp. Math., 171, 1994, 385–396 | DOI | MR | Zbl
[119] Schultz P., Sebeldin A., Sylla A. L., “Determination of torsion Abelian groups by their automorphism groups”, Bull. Aust. Math. Soc., 67 (2003), 511–519 | DOI | MR | Zbl
[120] Stelzer J., “A cancellation criterion for finite-rank torsion-free Abelian groups”, Proc. Amer. Math. Soc., 94 (1985), 363–368 | DOI | MR | Zbl
[121] Susanto H., Irawati S., Hidayah I. N., Irawati I., “Isomorphism between endomorphism rings of modules over a semi simple ring”, J. Physics: Conf. Series, 1245 (2019), 012050 | DOI | MR
[122] Thomas S., “The classification problem for torsion-free Abelian groups of finite rank”, J. Amer. Math. Soc., 16:1 (2003), 233–258 | DOI | MR | Zbl
[123] Wolfson K., “Anti-isomorphisms of endomorphism rings of locally free modules”, Math. Z., 202 (1989), 151–159 | DOI | MR | Zbl
[124] Wolfson K., “Isomorphisms between endomorphism rings of modules”, Proc. Amer. Math. Soc., 123 (1995), 1971–1973 | DOI | MR | Zbl
[125] Wolfson K. G., “Isomorphisms of the endomorphism rings of torsion-free modules”, Proc. Amer. Math. Soc., 14 (1963), 589–594 | DOI | MR | Zbl