Normal tropical $(0,-1)$-matrices and their orthogonal sets
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 5-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Square matrices $A$ and $B$ are orthogonal if $A\odot B=Z=B\odot A$, where $Z$ is the matrix with all entries equal to $0$, and $\odot$ is the tropical matrix multiplication. We study orthogonality for normal matrices over the set $\{0,-1\}$, endowed with tropical addition and multiplication. To do this, we investigate the orthogonal set of a matrix $A$, i.e., the set of all matrices orthogonal to $A$. In particular, we study the family of minimal elements inside the orthogonal set, called a basis. Orthogonal sets and bases are computed for various matrices and matrix sets. Matrices whose bases are singletons are characterized. Orthogonality and minimal orthogonality are described in the language of graphs. The geometric interpretation of the results obtained is discussed.
@article{FPM_2022_24_1_a0,
     author = {B. Bakhadly and A. Guterman and M. J. de la Puente},
     title = {Normal tropical $(0,-1)$-matrices and their orthogonal sets},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {5--30},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a0/}
}
TY  - JOUR
AU  - B. Bakhadly
AU  - A. Guterman
AU  - M. J. de la Puente
TI  - Normal tropical $(0,-1)$-matrices and their orthogonal sets
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2022
SP  - 5
EP  - 30
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a0/
LA  - ru
ID  - FPM_2022_24_1_a0
ER  - 
%0 Journal Article
%A B. Bakhadly
%A A. Guterman
%A M. J. de la Puente
%T Normal tropical $(0,-1)$-matrices and their orthogonal sets
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2022
%P 5-30
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a0/
%G ru
%F FPM_2022_24_1_a0
B. Bakhadly; A. Guterman; M. J. de la Puente. Normal tropical $(0,-1)$-matrices and their orthogonal sets. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 5-30. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a0/

[1] Kozhukhov I. B., Mikhalev A. V., “Poligony nad polugruppami: izbrannye voprosy strukturnoi teorii”, Fundament. i prikl. matem., 23:3 (2020), 141–199 | MR

[2] Bakhadly B., Guterman A., de la Puente M. J., “Orthogonality dlya $(0,-1)$ tropical normal matrices”, Special Matrices, 8 (2020), 40–60 | DOI | MR | Zbl

[3] Birkhoff G., Lattice Theory, Providence, Rhode Island, 1967 | MR | Zbl

[4] Butkovič P., “Simple image set of $(\max,+)$ linear mappings”, Discrete Appl. Math., 105 (2000), 73–86 | DOI | MR | Zbl

[5] Butkovič P., Max-Plus Linear Systems: Theory and Algorithms, Springer, Berlin, 2010 | MR

[6] Crawley P., Dilworth R. P., Algebraic Theory of Lattices, Prentice Hall, 1973 | Zbl

[7] Develin M., Sturmfels B., “Tropical convexity”, Doc. Math., 9 (2004), 1–27 | MR | Zbl

[8] De la Puente M. J., “Tropical linear maps on the plane”, Linear Algebra Appl., 435:7 (2011), 1681–1710 | DOI | MR | Zbl

[9] De la Puente M. J., “On tropical Kleene star matrices and alcoved polytopes”, Kybernetika, 49:6 (2013), 897–910 | MR | Zbl

[10] De la Puente M. J., “Quasi-Euclidean classification of alcoved convex polyhedra”, Linear Multilinear Algebra, 67 (2019) | MR

[11] Sergeev S., “Multiorder, Kleene stars and cyclic projectors in the geometry of max cones”, Tropical and Idempotent Mathematics, Contemp. Math., 495, eds. Litvinov G. L., Sergeev S. N., Amer. Math. Soc., Providence, 2009, 317–342 | DOI | MR | Zbl

[12] Sergeev S., Scheneider H., Butkovič P., “On visualization, subeigenvectors and Kleene stars in max algebra”, Linear Algebra Appl., 431 (2009), 2395–2406 | DOI | MR | Zbl

[13] Tran N. M., “Enumerating polytropes”, J. Combin. Theory Ser. A, 151 (2017), 1–22 | DOI | MR | Zbl

[14] Litvinov G. L., Sergeev S. N. (eds.), Tropical and Idempotent Mathematics, Contemp. Math., 495, Amer. Math. Soc., Providence, 2009 | DOI | MR | Zbl

[15] Yoeli M., “A note on a generalization of Boolean matrix theory”, Amer. Math. Mon., 68:6 (1961), 552–557 | DOI | MR | Zbl

[16] Yu B., Zhao X., Zeng L., “A congruence on the semiring of normal tropical matrices”, Linear Algebra Appl., 555 (2018), 321–335 | DOI | MR | Zbl