Normal tropical $(0,-1)$-matrices and their orthogonal sets
Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 5-30
Voir la notice de l'article provenant de la source Math-Net.Ru
Square matrices $A$ and $B$ are orthogonal if $A\odot B=Z=B\odot A$, where $Z$ is the matrix with all entries equal to $0$, and $\odot$ is the tropical matrix multiplication. We study orthogonality for normal matrices over the set $\{0,-1\}$, endowed with tropical addition and multiplication. To do this, we investigate the orthogonal set of a matrix $A$, i.e., the set of all matrices orthogonal to $A$. In particular, we study the family of minimal elements inside the orthogonal set, called a basis. Orthogonal sets and bases are computed for various matrices and matrix sets. Matrices whose bases are singletons are characterized. Orthogonality and minimal orthogonality are described in the language of graphs. The geometric interpretation of the results obtained is discussed.
@article{FPM_2022_24_1_a0,
author = {B. Bakhadly and A. Guterman and M. J. de la Puente},
title = {Normal tropical $(0,-1)$-matrices and their orthogonal sets},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {5--30},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a0/}
}
TY - JOUR AU - B. Bakhadly AU - A. Guterman AU - M. J. de la Puente TI - Normal tropical $(0,-1)$-matrices and their orthogonal sets JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2022 SP - 5 EP - 30 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a0/ LA - ru ID - FPM_2022_24_1_a0 ER -
B. Bakhadly; A. Guterman; M. J. de la Puente. Normal tropical $(0,-1)$-matrices and their orthogonal sets. Fundamentalʹnaâ i prikladnaâ matematika, Tome 24 (2022) no. 1, pp. 5-30. http://geodesic.mathdoc.fr/item/FPM_2022_24_1_a0/