Four-dimensional real division algebras with few derivations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 177-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to advance in the determination of all four-dimensional real division algebras $\mathcal{A}$, we introduce a new duplication process preserving the unit. This duplication process accompanied by an isotopy allow us to obtain all of these algebras in case $\operatorname{Der}(\mathcal{A})\neq\{0\}$ and partially in case $\operatorname{Der}(\mathcal{A})=\{0\}$. In the last case, we provide an $8$-parameter family of ugly $\mathbb C$-associative algebras and an $8$-parameter family of $\mathbb C$-associative algebras whose group of automorphisms contains only the identity and some reflections. For non-ugly algebras $\mathbb H_{f, f}$, the group $\operatorname{Aut}(\mathbb H_{f, f})$ contains a reflection. Also algebras $\mathcal A$ with $\operatorname{Aut}(\mathcal A)=\mathbb Z_2$ or $\mathbb Z_2\times\mathbb Z_2$ are studied.
@article{FPM_2021_23_4_a10,
     author = {O. Fayz and E. Napedenina and A. Rochdi and M. Tvalavadze},
     title = {Four-dimensional real division algebras with few derivations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {177--207},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a10/}
}
TY  - JOUR
AU  - O. Fayz
AU  - E. Napedenina
AU  - A. Rochdi
AU  - M. Tvalavadze
TI  - Four-dimensional real division algebras with few derivations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2021
SP  - 177
EP  - 207
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a10/
LA  - ru
ID  - FPM_2021_23_4_a10
ER  - 
%0 Journal Article
%A O. Fayz
%A E. Napedenina
%A A. Rochdi
%A M. Tvalavadze
%T Four-dimensional real division algebras with few derivations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2021
%P 177-207
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a10/
%G ru
%F FPM_2021_23_4_a10
O. Fayz; E. Napedenina; A. Rochdi; M. Tvalavadze. Four-dimensional real division algebras with few derivations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 177-207. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a10/

[1] Albert A. A., “Absolute valued real algebras”, Ann. Math., 48 (1947), 495–501 | MR | Zbl

[2] Alsaody S., “Classification of the finite-dimensional real division composition algebras having a non-Abelian derivation algebra”, J. Algebra, 445 (2016), 35–77 | MR | Zbl

[3] Althoen S. C., Hansen K. D., Kugler L. D., “$\mathbb{C}$-associative algebras of dimension $4$ over $\mathbb{R}$”, Algebras Groups Geom., 3 (1986), 329–360 | MR | Zbl

[4] Althoen S. C., Hansen K. D., Kugler L. D., “Four-dimensional real algebras satisfying two $\mathbb{C}$-associative conditions”, Algebras Groups Geom., 4 (1987), 395–419 | MR | Zbl

[5] Althoen S. C., Hansen K. D., Kugler L. D., “Rotational scaled quaternion division algebras”, J. Algebra, 146 (1992), 124–143 | MR | Zbl

[6] Althoen S. C., Hansen K. D., Kugler L. D., “Fused four-dimensional real division algebras”, J. Algebra, 170 (1994), 649–660 | MR | Zbl

[7] Althoen S. C., Hansen K. D., Kugler L. D., “Four-dimensional real algebras satisfying left or right $\mathbb{C}$-associativity”, Commun. Algebra, 26:2 (1998), 565–587 | MR | Zbl

[8] Althoen S. C., Hansen K. D., Kugler L. D., “Four-dimensional real algebras satisfying middle $\mathbb{C}$-associativity”, Algebras Groups Geom., 17 (2000), 123–148 | MR | Zbl

[9] Althoen S. C., Kugler L. D., When is $\mathbb{R}^2$ a division algebra?, Am. Math. Mon., 90 (1983), 625–635 | MR | Zbl

[10] Benkart G. M., Osborn J. M., “An investigation of real division algebras using derivations”, Pacific J. Math., 96 (1981), 265–300 | MR | Zbl

[11] Benkart G. M., Osborn J. M., “The derivation algebra of a real division algebra”, Amer. J. Math., 103 (1981), 1135–1150 | MR | Zbl

[12] Bott R., Milnor J., “On the parallelizability of the spheres”, Bull. Amer. Math. Soc., 64 (1958), 87–89 | MR | Zbl

[13] Bruck R. H., “Some results in the theory of linear non-associative algebras”, Trans. Am. Math. Soc., 56 (1944), 141–199 | MR | Zbl

[14] Calderón A., Kaïdi A., Martín C., Morales A., Ramírez M., Rochdi A., “Finite-dimensional absolute valued algebras”, Israël J. Math., 184 (2011), 193–220 | MR | Zbl

[15] Cuenca J. A., de los Santos Villodres R., Kaïdi A., Rochdi A., “Real quadratic flexible division algebras”, Linear Algebra Appl., 290 (1999), 1–22 | MR | Zbl

[16] Darpö E., “On the classification of the real flexible division algebras”, Colloq. Math., 105:1 (2006), 1–17 | MR | Zbl

[17] Diabang A. S., Diankha O., Ly M., Rochdi A., “A note on the real division algebras with non-trivial derivations”, Int. J. Algebra, 10:1 (2016), 1–11 | MR

[18] Diabang A. S., Diankha O., Rochdi A., “On the automorphisms of absolute-valued algebras”, Int. J. Algebra, 10:3 (2016), 113–123 | MR

[19] Dickson L. E., “Linear algebras with associativity not assumed”, Duke Math. J., 1 (1935), 113–125 | MR

[20] Dieterich E., “Classification, automorphism groups and categorical structure of the two-dimensional real division algebras”, J. Algebra Its Appl., 4 (2005), 517–538 | MR | Zbl

[21] Dokovic D. Z., Zhao K., “Real division algebras with large automorphism group”, J. Algebra, 282 (2004), 758–796 | MR | Zbl

[22] Forsberg L., Four-dimensional absolute valued algebras, Masters Thesis, Uppsala Univ., 2009

[23] Hirzebruch F., Koecher M., Remmert R., Numbers, Grad. Texts Math., 123, Springer, New York, 1990 | MR | Zbl

[24] Kervaire M., “Non-parallelizability of the $n$-sphere for $n>7$”, Proc. Natl. Acad. Sci. U.S.A., 44 (1958), 280–283 | MR | Zbl

[25] Pérez-Izquierdo J. M., “Division composition algebras through their derivation algebras”, J. Algebra, 303:1 (2006), 1–29 | MR | Zbl

[26] Petro J., “Real division algebras of dimension $>1$ contain $\mathbb{C}$”, Am. Math. Mon., 94 (1987), 445–449 | MR | Zbl

[27] Ramírez M. I., “On four dimensional absolute valued algebras”, Proc. of the Int. Conf. on Jordan Structures (Málaga, June 1997), eds. A. Castellón, J. A. Cuenca, A. Fernández, C. Martín, Málaga, 1999, 169–173 | Zbl

[28] Rees D., “The nuclei of non-associative division algebras”, Math. Proc. Cambridge Philos. Soc., 46 (1950), 1–18 | MR | Zbl

[29] Rochdi A., “Étude des algèbres réelles de Jordan non commutatives, de division, de dimension $8$, dont l'algèbre de Lie des dérivations n'est pas triviale”, J. Algebra, 178 (1995), 843–871 | MR | Zbl

[30] Rochdi A., “Eight-dimensional real absolute valued algebras with left unit whose automorphism group is trivial”, Int. J. Math. Math. Sci., 70 (2003), 4447–4454 | MR | Zbl

[31] Segre B., “La teoria delle algebre ed alcune questione di realta”, Univ. Roma, Ist. Naz. Alta Mat., Rend. Mat. E Appl. Ser. 5, 13 (1954), 157–188 | MR | Zbl

[32] Tvalavadze M., Vickery P., “A note on division algebras of dimension four”, J. Algebra Appl., 16 (2017), 1750095 | MR | Zbl

[33] Waterhouse W. C., “Nonassociative quaternion algebras”, Algebras Groups Geom., 4 (1987), 365–378 | MR | Zbl

[34] Yang C. T., “Division algebras and fibrations of spheres by great spheres”, J. Differential Geom., 16 (1981), 577–593 | MR | Zbl