Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2021_23_4_a0, author = {L. R. Borisova and V. I. Glizburg and S. V. Pchelintsev}, title = {One-sided isotopes of finite-dimensional algebras}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--16}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a0/} }
TY - JOUR AU - L. R. Borisova AU - V. I. Glizburg AU - S. V. Pchelintsev TI - One-sided isotopes of finite-dimensional algebras JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2021 SP - 3 EP - 16 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a0/ LA - ru ID - FPM_2021_23_4_a0 ER -
L. R. Borisova; V. I. Glizburg; S. V. Pchelintsev. One-sided isotopes of finite-dimensional algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 3-16. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a0/
[1] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR
[2] Maltsev A. I., “Ob odnom predstavlenii neassotsiativnykh kolets”, UMN, 7:1 (1952), 181–185 | MR | Zbl
[3] Pchelintsev S. V., “Nilpotentnost assotsiatornogo ideala svobodnogo konechnoporozhdennogo $(-1,1)$-koltsa”, Algebra i logika, 14:5 (1975), 543–571 | MR | Zbl
[4] Pchelintsev S. V., “O mnogoobrazii, porozhdennom svobodnoi algebroi tipa $(-1,1)$ s dvumya porozhdayuschimi”, Sib. matem. zhurn., 22:3 (1981), 162–178 | MR | Zbl
[5] Pchelintsev S. V., “Izotopy pervichnykh $(-1,1)$- i iordanovykh algebr”, Algebra i logika, 49:3 (2010), 388–423 | MR | Zbl
[6] Pchelintsev S. V., “Izotopy alternativnykh algebr kharakteristiki, otlichnoi ot $3$”, Izv. RAN. Ser. matem., 84:5 (2020), 197–210 | MR | Zbl
[7] Albert A. A., “Non-associative algebras”, Ann. Math., 43 (1942), 685–707 | MR | Zbl
[8] Allison B., Faulkner J., “Isotopy for extended affine Lie algebras and Lie tori”, Developments and Trends in Infinite-Dimensional Lie Theory, Progress Math., 288, eds. Neeb K.-H., Pianzola A., Birkhäuser, 2011, 3–43 | MR | Zbl
[9] Bruck R. H., “Some results in the theory of linear non-associative algebras”, Trans. Amer. Math. Soc., 56 (1944), 141–199 | MR | Zbl
[10] Darpö E., “Isotopes of Hurwitz algebras”, Mediterr. J. Math., 15 (2018), 52 | MR | Zbl
[11] Darpö E., Izquierdo J. M. P., “Autotopies and quasigroup identities: New aspects of non-associative division algebras”, Forum Math., 27:5 (2012), 2691–2745 | MR
[12] Falcón O. J., Falcón R. M., Núñez J., Isomorphism and isotopism classes of filiform Lie algebras of dimension up to seven, 2015, arXiv: 1510.07066 [math.RA] | MR
[13] Glizburg V. I., Pchelintsev S. V., “Isotopes of simple algebras of arbitrary dimension”, Asian-Eur. J. Math., 13:6 (2020), 2050108 | MR | Zbl
[14] Jacobson N., Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., 1968 | MR | Zbl
[15] Kleinfeld E., “Right alternative rings”, Proc. Amer. Math. Soc., 4 (1953), 939–944 | MR | Zbl
[16] Krylov A. A., Pchelintsev S. V., “Isotopic simple algebras with a nil basis”, Commun. Algebra, 48:4 (2020), 1697–1712 | MR | Zbl
[17] McCrimmon K., “Homotopes of alternative algebras”, Math. Ann., 191:4 (1971), 253–262 | MR | Zbl
[18] Schafer R. D., “Alternative algebras over an arbitrary filds”, Bull. Amer. Math. Soc., 49 (1943), 549–555 | MR | Zbl
[19] Schwarz T., “Small non-associative division algebras up to isotopy”, Algebra Discrete Math., 9 (2010), 103–108 | MR
[20] Thedy A., “Right alternative algebras and Wedderburn principal theorem”, Proc. Amer. Math. Soc., 72:3 (1978), 427–435 | MR | Zbl