One-sided isotopes of finite-dimensional algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 3-16
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the right isotopes of finite-dimensional $(-1,1)$-algebras cannot be reduced to left isotopes. It is proved that no unital isotope of the Mikheev algebra is a left alternative algebra. In particular, the opposite algebra, generally speaking, is not an isotope of the original algebra.
@article{FPM_2021_23_4_a0,
author = {L. R. Borisova and V. I. Glizburg and S. V. Pchelintsev},
title = {One-sided isotopes of finite-dimensional algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--16},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a0/}
}
TY - JOUR AU - L. R. Borisova AU - V. I. Glizburg AU - S. V. Pchelintsev TI - One-sided isotopes of finite-dimensional algebras JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2021 SP - 3 EP - 16 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a0/ LA - ru ID - FPM_2021_23_4_a0 ER -
L. R. Borisova; V. I. Glizburg; S. V. Pchelintsev. One-sided isotopes of finite-dimensional algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2021) no. 4, pp. 3-16. http://geodesic.mathdoc.fr/item/FPM_2021_23_4_a0/