Geometric distortion correction of images received from biometric fingerprint devices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quality of fingerprint images is very important for recognition and identification in biometric systems. Geometric distortions and different image scales may worsen fingerprint recognition. It is necessary to adjust distortions and scale in biometric finger capture systems. Algorithms for correcting distortions and scale are investigated, analyzed, and developed in this paper. A polynomial model of second order is used as a mathematical model of spatial distortions. To correct the brightness of image points, bicubic interpolation is used.
@article{FPM_2020_23_3_a5,
     author = {A. G. Grizhebovskaya and A. V. Mikhalev and L. P. Dmitrieva},
     title = {Geometric distortion correction of images received from biometric fingerprint devices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a5/}
}
TY  - JOUR
AU  - A. G. Grizhebovskaya
AU  - A. V. Mikhalev
AU  - L. P. Dmitrieva
TI  - Geometric distortion correction of images received from biometric fingerprint devices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 75
EP  - 81
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a5/
LA  - ru
ID  - FPM_2020_23_3_a5
ER  - 
%0 Journal Article
%A A. G. Grizhebovskaya
%A A. V. Mikhalev
%A L. P. Dmitrieva
%T Geometric distortion correction of images received from biometric fingerprint devices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 75-81
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a5/
%G ru
%F FPM_2020_23_3_a5
A. G. Grizhebovskaya; A. V. Mikhalev; L. P. Dmitrieva. Geometric distortion correction of images received from biometric fingerprint devices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 75-81. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a5/

[1] Markelov K. S., “Model povysheniya informativnosti tsifrovykh izobrazhenii na baze metoda superrazresheniya”, Inzhenernyi vestn., 2013, no. 3, 525–542

[2] Prett U., Tsifrovaya obrabotka izobrazhenii, Mir, M., 1982

[3] Image quality specifications for single finger capture devices, , 2006 https://www.fbibiospecs.cjis.gov/Document/Get?fileName=pivspec.pdf

[4] Maltoni D., Maio D., Jain A. K., Prabhakar S., Handbook of Fingerprint Recognition, Springer, New York, 2009

[5] Nill N. B., Test procedures for verifying image quality requirements for personal identity verification (PIV) single finger capture devices, , 2007 https://www.mitre.org/publications/technical-papers/test-procedures-for-verifying-image-quality-requirements-for-personal-identity-verification-piv-single-finger-capture-devices

[6] Numerical recipes, http://numerical.recipes/com/storefront.html

[7] Pratt W. K., Digital image processing: PIKS Scientific Inside, Wiley, 2007 | Zbl

[8] Press W., Teukolsky S., Vetterling W., Flannery B., Numerical Recipes. The Art of Scientific Computing, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[9] Szeliski R., Computer Vision: Algorithms and Applications, Springer, Berlin, 2010