Properties of generalized nilpotent elements of pseudo-normed commutative rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The set $I$ of all generalized nilpotent elements of a pseudo-normed commutative ring $(R,\xi )$ is a closed ideal, and the factor ring $(R,\xi )/I$ does not contain nonzero generalized nilpotent elements.
@article{FPM_2020_23_3_a0,
     author = {S. A. Aleschenko and V. I. Arnautov and S. T. Glavatsky},
     title = {Properties of generalized nilpotent elements of pseudo-normed commutative rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a0/}
}
TY  - JOUR
AU  - S. A. Aleschenko
AU  - V. I. Arnautov
AU  - S. T. Glavatsky
TI  - Properties of generalized nilpotent elements of pseudo-normed commutative rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 3
EP  - 11
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a0/
LA  - ru
ID  - FPM_2020_23_3_a0
ER  - 
%0 Journal Article
%A S. A. Aleschenko
%A V. I. Arnautov
%A S. T. Glavatsky
%T Properties of generalized nilpotent elements of pseudo-normed commutative rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 3-11
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a0/
%G ru
%F FPM_2020_23_3_a0
S. A. Aleschenko; V. I. Arnautov; S. T. Glavatsky. Properties of generalized nilpotent elements of pseudo-normed commutative rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a0/

[1] Gelfand M. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960 | MR

[2] Aleschenko S. A., Arnautov V. I., “Quotient rings of pseudonormed rings”, Bull. Acad. Sci. Rep. Moldova. Math., 44:1 (2006), 3–16 | MR