Properties of generalized nilpotent elements of pseudo-normed commutative rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
The set $I$ of all generalized nilpotent elements of a pseudo-normed commutative ring $(R,\xi )$ is a closed ideal, and the factor ring $(R,\xi )/I$ does not contain nonzero generalized nilpotent elements.
@article{FPM_2020_23_3_a0,
author = {S. A. Aleschenko and V. I. Arnautov and S. T. Glavatsky},
title = {Properties of generalized nilpotent elements of pseudo-normed commutative rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--11},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a0/}
}
TY - JOUR AU - S. A. Aleschenko AU - V. I. Arnautov AU - S. T. Glavatsky TI - Properties of generalized nilpotent elements of pseudo-normed commutative rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 3 EP - 11 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a0/ LA - ru ID - FPM_2020_23_3_a0 ER -
%0 Journal Article %A S. A. Aleschenko %A V. I. Arnautov %A S. T. Glavatsky %T Properties of generalized nilpotent elements of pseudo-normed commutative rings %J Fundamentalʹnaâ i prikladnaâ matematika %D 2020 %P 3-11 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a0/ %G ru %F FPM_2020_23_3_a0
S. A. Aleschenko; V. I. Arnautov; S. T. Glavatsky. Properties of generalized nilpotent elements of pseudo-normed commutative rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 3, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2020_23_3_a0/