Universal algebraic geometry: syntax and semantics
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 75-88
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we give a general insight into the ideas that make ground for the developing of universal algebraic geometry and logical geometry. We specify the role of algebraic logic as one of the major instruments of the whole theory. The problem of the sameness of geometries of algebraic and definable sets for different algebras is considered as ans illuminating example how algebra, geometry, model theory, and algebraic logic work together.
@article{FPM_2020_23_2_a4,
author = {A. Gvaramia and B. Plotkin and E. Plotkin},
title = {Universal algebraic geometry: syntax and semantics},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {75--88},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a4/}
}
TY - JOUR AU - A. Gvaramia AU - B. Plotkin AU - E. Plotkin TI - Universal algebraic geometry: syntax and semantics JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 75 EP - 88 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a4/ LA - ru ID - FPM_2020_23_2_a4 ER -
A. Gvaramia; B. Plotkin; E. Plotkin. Universal algebraic geometry: syntax and semantics. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 75-88. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a4/