@article{FPM_2020_23_2_a12,
author = {A. V. Mikhalev and E. E. Shirshova},
title = {The projective geometry over partially ordered skew fields},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {231--245},
year = {2020},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a12/}
}
A. V. Mikhalev; E. E. Shirshova. The projective geometry over partially ordered skew fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 231-245. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a12/
[1] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR
[2] Ber R., Lineinaya algebra i proektivnaya geometriya, Izd. inostr. lit., M., 1955
[3] Kantorovich L. V., “Lineinye poluuporyadochennye prostranstva”, Matem. sb., 2 (1937), 121–168 | Zbl
[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR
[5] Kopytov V. M., Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR
[6] Mikhalev A. V., Shirshova E. E., “Pervichnyi radikal napravlennykh psevdouporyadochennykh kolets”, Fundament. i prikl. matem., 22:4 (2019), 147–166
[7] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965
[8] Shirshova E. E., “O vypuklykh podgruppakh grupp s interpolyatsionnym usloviem”, Fundament. i prikl. matem., 17:7 (2011/2012), 187–199
[9] Shirshova E. E., “O znacheniyakh elementov chastichno uporyadochennykh grupp”, Fundament. i prikl. matem., 18:3 (2013), 199–212
[10] Shirshova E. E., “O svoistvakh interpolyatsionnykh grupp”, Matem. zametki, 93:2 (2013), 295–304 | MR | Zbl
[11] Shirshova E. E., “O vypuklykh napravlennykh podgruppakh psevdoreshetochno uporyadochennykh grupp”, Fundament. i prikl. matem., 22:4 (2019), 238–252 | MR
[12] Kaplansky I., Infinite Abelian Groups, Ann Arbor, 1954 ; 1969 | MR | Zbl
[13] Riesz F., “Sur la théorie générale des opérations linéaires”, Ann. Math., 41 (1940), 174–206 | DOI | MR
[14] Shirshova E. E., “On groups with the almost orthogonality condition”, Commun. Algebra, 28:10 (2000), 4803–4818 | DOI | MR | Zbl