The projective geometry over partially ordered skew fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 231-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

Derivative lattices associated with partially ordered linear spaces over partially ordered skew fields are considered. Properties of the convex projective geometry $\mathcal L$ for a partially ordered linear space ${}_FV$ over a partially ordered skew field $F$ are investigated. The convexity of linear subspaces for the linear space ${}_FV$ means the Abelian convexity ($\mathrm{ab}$-convexity), which is based on the definition of a convex subgroup for a partially ordered group. It is shown that $\mathrm{ab}$-convex directed linear subspaces plays for the theory of partially ordered linear spaces the same role as convex directed subgroups for the theory of partially ordered groups. We obtain the element-wise description of the smallest $\mathrm{ab}$-convex directed linear subspace that contains a given positive element, for a linear space over a directed skew field. It is proved that if ${}_FV$ is an interpolation linear space over a partially ordered skew field $F$, then, in the lattice $\mathcal L$, the union operation is completely distributive with respect to intersection. Properties of the projective geometry for pseudo lattice-ordered linear spaces over partially ordered skew fields are investigated.
@article{FPM_2020_23_2_a12,
     author = {A. V. Mikhalev and E. E. Shirshova},
     title = {The projective geometry over partially ordered skew fields},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {231--245},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a12/}
}
TY  - JOUR
AU  - A. V. Mikhalev
AU  - E. E. Shirshova
TI  - The projective geometry over partially ordered skew fields
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 231
EP  - 245
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a12/
LA  - ru
ID  - FPM_2020_23_2_a12
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%A E. E. Shirshova
%T The projective geometry over partially ordered skew fields
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 231-245
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a12/
%G ru
%F FPM_2020_23_2_a12
A. V. Mikhalev; E. E. Shirshova. The projective geometry over partially ordered skew fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 231-245. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a12/

[1] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[2] Ber R., Lineinaya algebra i proektivnaya geometriya, Izd. inostr. lit., M., 1955

[3] Kantorovich L. V., “Lineinye poluuporyadochennye prostranstva”, Matem. sb., 2 (1937), 121–168 | Zbl

[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR

[5] Kopytov V. M., Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR

[6] Mikhalev A. V., Shirshova E. E., “Pervichnyi radikal napravlennykh psevdouporyadochennykh kolets”, Fundament. i prikl. matem., 22:4 (2019), 147–166

[7] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965

[8] Shirshova E. E., “O vypuklykh podgruppakh grupp s interpolyatsionnym usloviem”, Fundament. i prikl. matem., 17:7 (2011/2012), 187–199

[9] Shirshova E. E., “O znacheniyakh elementov chastichno uporyadochennykh grupp”, Fundament. i prikl. matem., 18:3 (2013), 199–212

[10] Shirshova E. E., “O svoistvakh interpolyatsionnykh grupp”, Matem. zametki, 93:2 (2013), 295–304 | MR | Zbl

[11] Shirshova E. E., “O vypuklykh napravlennykh podgruppakh psevdoreshetochno uporyadochennykh grupp”, Fundament. i prikl. matem., 22:4 (2019), 238–252 | MR

[12] Kaplansky I., Infinite Abelian Groups, Ann Arbor, 1954 ; 1969 | MR | Zbl

[13] Riesz F., “Sur la théorie générale des opérations linéaires”, Ann. Math., 41 (1940), 174–206 | DOI | MR

[14] Shirshova E. E., “On groups with the almost orthogonality condition”, Commun. Algebra, 28:10 (2000), 4803–4818 | DOI | MR | Zbl