An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 217-229

Voir la notice de l'article provenant de la source Math-Net.Ru

We demonstrate that the technique for calculating the length of two-block matrix algebras, developed by the author earlier, can be used to calculate the lengths of group algebras of Abelian groups. We find the length of the group algebra of a noncyclic Abelian group of order $2p^2 $, where $p> 2$ is a prime number, over a field of characteristic $p$, namely, we prove that the length of this algebra is equal to $3p-2$.
@article{FPM_2020_23_2_a11,
     author = {O. V. Markova},
     title = {An example of length computation for a~group algebra of a~noncyclic {Abelian} group in the modular case},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {217--229},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/}
}
TY  - JOUR
AU  - O. V. Markova
TI  - An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 217
EP  - 229
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/
LA  - ru
ID  - FPM_2020_23_2_a11
ER  - 
%0 Journal Article
%A O. V. Markova
%T An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 217-229
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/
%G ru
%F FPM_2020_23_2_a11
O. V. Markova. An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 217-229. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/