An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 217-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

We demonstrate that the technique for calculating the length of two-block matrix algebras, developed by the author earlier, can be used to calculate the lengths of group algebras of Abelian groups. We find the length of the group algebra of a noncyclic Abelian group of order $2p^2 $, where $p> 2$ is a prime number, over a field of characteristic $p$, namely, we prove that the length of this algebra is equal to $3p-2$.
@article{FPM_2020_23_2_a11,
     author = {O. V. Markova},
     title = {An example of length computation for a~group algebra of a~noncyclic {Abelian} group in the modular case},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {217--229},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/}
}
TY  - JOUR
AU  - O. V. Markova
TI  - An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 217
EP  - 229
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/
LA  - ru
ID  - FPM_2020_23_2_a11
ER  - 
%0 Journal Article
%A O. V. Markova
%T An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 217-229
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/
%G ru
%F FPM_2020_23_2_a11
O. V. Markova. An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 217-229. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/

[1] Guterman A. E., Markova O. V., “Dlina gruppovykh algebr grupp nebolshogo razmera”, Zap. nauchn. sem. POMI, 472, 2018, 76–87

[2] Kolegov N. A., Markova O. V., “Sistemy porozhdayuschikh matrichnykh algebr intsidentnosti nad konechnymi polyami”, Zap. nauchn. sem. POMI, 472, 2018, 120–144

[3] Kouselo E., Gonsales S., Markov V. T., Martines K., Nechaev A. A., “Predstavleniya kodov Rida–Solomona i Rida–Mallera idealami”, Algebra i logika, 51:3 (2012), 297–320 | MR

[4] Markova O. V., “Verkhnyaya otsenka dliny kommutativnykh algebr”, Matem. sb., 200:12 (2009), 41–62 | Zbl

[5] Markova O. V., “Funktsiya dliny i matrichnye algebry”, Fundament. i prikl. matem., 17:6 (2012), 65–173

[6] Markova O. V., “O svyazi dliny algebry i indeksa nilpotentnosti ee radikala Dzhekobsona”, Matem. zametki, 94:5 (2013), 682–688 | Zbl

[7] Tumaikin I. N., “Bazisnye kody Rida–Mallera kak gruppovye kody”, Fundament. i prikl. matem., 18:4 (2013), 137–154

[8] Tumaikin I. N., “Idealy gruppovykh kolets, svyazannye s kodami Rida–Mallera”, Fundament. i prikl. matem., 21:1 (2016), 211–215

[9] Couselo E., González S., Markov V., Martínez C., Nechaev A., “Some constructions of linearly optimal group codes”, Linear Algebra Appl., 433:2 (2010), 356–364 | DOI | MR | Zbl

[10] García Pillado C., González S., Markov V., Markova O., Martínez C., “Group codes of dimension 2 and 3 are Abelian”, Finite Fields Appl., 55 (2019), 167–176 | DOI | MR | Zbl

[11] González S., Markov V., Markova O., Martínez C., “Group codes”, Algebra, Codes and Cryptology, A2C 2019, Commun. Comput. Inform. Sci., 1133, eds. C. Gueye, E. Persichetti, P.-L. Cayrel, J. Buchmann, Springer, Berlin, 2019, 83–96 | DOI | Zbl

[12] Guterman A. E., Khrystik M. A., Markova O. V., On the lengths of group algebras of finite Abelian groups in the modular case, Preprint, 2020 | MR

[13] Guterman A. E., Khrystik M. A., Markova O. V., On the lengths of group algebras of finite Abelian groups in the semi-simple case, Preprint, 2020 | MR

[14] Guterman A., Laffey T., Markova O., Šmigoc H., “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR | Zbl

[15] Guterman A. E., Markova O. V., “Commutative matrix subalgebras and length function”, Linear Algebra Appl., 430 (2009), 1790–1805 | DOI | MR | Zbl

[16] Guterman A. E., Markova O. V., “The length of the group algebra of the group ${\mathbf Q_8}$”, New Trends in Algebra and Combinatorics, Proc. of the 3rd Int. Congress in Algebra and Combinatorics, eds. K. P. Shum, E. Zelmanov, P. Kolesnikov, A. Wong, World Scientific, Singapore, 2019, 106–134

[17] Jennings S. A., “The structure of the group ring of a $p$-group over a modular field”, Trans. Am. Math. Soc., 50 (1941), 175–185 | MR

[18] Pappacena C. J., “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl

[19] Passman D. S., The Algebraic Structure of Group Rings, Wiley, New York, 1977 | MR | Zbl

[20] Paz A., “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl

[21] Pierce R., Associative Algebras, Springer, Berlin, 1982 | MR | Zbl