An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 217-229
Voir la notice de l'article provenant de la source Math-Net.Ru
We demonstrate that the technique for calculating the length of two-block matrix algebras, developed by the author earlier, can be used to calculate the lengths of group algebras of Abelian groups. We find the length of the group algebra of a noncyclic Abelian group of order $2p^2 $, where $p> 2$ is a prime number, over a field of characteristic $p$, namely, we prove that the length of this algebra is equal to $3p-2$.
@article{FPM_2020_23_2_a11,
author = {O. V. Markova},
title = {An example of length computation for a~group algebra of a~noncyclic {Abelian} group in the modular case},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {217--229},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/}
}
TY - JOUR AU - O. V. Markova TI - An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 217 EP - 229 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/ LA - ru ID - FPM_2020_23_2_a11 ER -
%0 Journal Article %A O. V. Markova %T An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case %J Fundamentalʹnaâ i prikladnaâ matematika %D 2020 %P 217-229 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/ %G ru %F FPM_2020_23_2_a11
O. V. Markova. An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 217-229. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a11/