Non-associative structures in homomorphic encryption
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 209-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain a classification of quasigroup rings by the quantity of elements with null left annihilator for different quasigroups. This classification becomes possible due to a criterion of being an element with null left annihilator in a quasigroup ring. By virtue of this criterion, we make a calculation to find regularities using various fields and quasigroups with order $4$. This outcome helps us to obtain two results where any two quasigroup rings have the same number of elements with null left annihilator and the element of the quasigroup ring $\mathrm{GF}(p)Q$ with fixed quasigroup $Q$ has null left annihilator in the quasigroup ring $\mathrm{GF}(p^n)Q$.
@article{FPM_2020_23_2_a10,
     author = {V. Markov and A. V. Mikhalev and E. S. Kislitsyn},
     title = {Non-associative structures in homomorphic encryption},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {209--215},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a10/}
}
TY  - JOUR
AU  - V. Markov
AU  - A. V. Mikhalev
AU  - E. S. Kislitsyn
TI  - Non-associative structures in homomorphic encryption
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 209
EP  - 215
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a10/
LA  - ru
ID  - FPM_2020_23_2_a10
ER  - 
%0 Journal Article
%A V. Markov
%A A. V. Mikhalev
%A E. S. Kislitsyn
%T Non-associative structures in homomorphic encryption
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 209-215
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a10/
%G ru
%F FPM_2020_23_2_a10
V. Markov; A. V. Mikhalev; E. S. Kislitsyn. Non-associative structures in homomorphic encryption. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 209-215. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a10/

[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967

[2] Gribov A. V., Zolotykh P. A., Mikhalev A. V., “Postroenie algebraicheskoi kriptosistemy nad kvazigruppovym koltsom”, Matem. voprosy kriptografii, 4:4 (2010), 23–33 | MR

[3] Katyshev S. Yu., Markov V. T., Nechaev A. A., Ispolzovanie neassotsiativnykh gruppoidov dlya realizatsii protsedury otkrytogo raspredeleniya klyuchei, 2014

[4] Gentry C., A fully homomorphic encryption scheme, PhD thesis, Stanford Univ., 2009 | Zbl