Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2020_23_2_a10, author = {V. Markov and A. V. Mikhalev and E. S. Kislitsyn}, title = {Non-associative structures in homomorphic encryption}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {209--215}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a10/} }
TY - JOUR AU - V. Markov AU - A. V. Mikhalev AU - E. S. Kislitsyn TI - Non-associative structures in homomorphic encryption JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 209 EP - 215 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a10/ LA - ru ID - FPM_2020_23_2_a10 ER -
V. Markov; A. V. Mikhalev; E. S. Kislitsyn. Non-associative structures in homomorphic encryption. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 209-215. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a10/
[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967
[2] Gribov A. V., Zolotykh P. A., Mikhalev A. V., “Postroenie algebraicheskoi kriptosistemy nad kvazigruppovym koltsom”, Matem. voprosy kriptografii, 4:4 (2010), 23–33 | MR
[3] Katyshev S. Yu., Markov V. T., Nechaev A. A., Ispolzovanie neassotsiativnykh gruppoidov dlya realizatsii protsedury otkrytogo raspredeleniya klyuchei, 2014
[4] Gentry C., A fully homomorphic encryption scheme, PhD thesis, Stanford Univ., 2009 | Zbl