Non-associative structures in homomorphic encryption
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 209-215
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we obtain a classification of quasigroup rings by the quantity of elements with null left annihilator for different quasigroups. This classification becomes possible due to a criterion of being an element with null left annihilator in a quasigroup ring. By virtue of this criterion, we make a calculation to find regularities using various fields and quasigroups with order $4$. This outcome helps us to obtain two results where any two quasigroup rings have the same number of elements with null left annihilator and the element of the quasigroup ring $\mathrm{GF}(p)Q$ with fixed quasigroup $Q$ has null left annihilator in the quasigroup ring $\mathrm{GF}(p^n)Q$.
@article{FPM_2020_23_2_a10,
author = {V. Markov and A. V. Mikhalev and E. S. Kislitsyn},
title = {Non-associative structures in homomorphic encryption},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {209--215},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a10/}
}
TY - JOUR AU - V. Markov AU - A. V. Mikhalev AU - E. S. Kislitsyn TI - Non-associative structures in homomorphic encryption JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 209 EP - 215 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a10/ LA - ru ID - FPM_2020_23_2_a10 ER -
V. Markov; A. V. Mikhalev; E. S. Kislitsyn. Non-associative structures in homomorphic encryption. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 2, pp. 209-215. http://geodesic.mathdoc.fr/item/FPM_2020_23_2_a10/