Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2020_23_1_a9, author = {A. I. Rytova}, title = {Harmonic analysis of random walks with heavy tails}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {175--189}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a9/} }
A. I. Rytova. Harmonic analysis of random walks with heavy tails. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 175-189. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a9/
[1] Rytova A. I., Yarovaya E. B., “Mnogomernaya lemma Vatsona i ee primenenie”, Matem. zametki, 99:3 (2016), 395–403 | MR | Zbl
[2] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, 2, Mir, M., 1984 | MR
[3] Yarovaya E. B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekhaniko-matematicheskom f-te MGU, M., 2007
[4] Yarovaya E. B., “Spektralnaya asimptotika nadkriticheskogo vetvyaschegosya sluchainogo bluzhdaniya”, Teoriya veroyatn. i ee primen., 62:3 (2017), 518–541
[5] Agbor A., Molchanov S., Vainberg B., “Global limit theorems on the convergence of multidimensional random walks to stable processes”, Stoch. Dyn., 15:3 (2015), 1550024 | DOI | MR | Zbl
[6] Albeverio S., Bogachev L. V., Yarovaya E. B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris. Sér. I, Math., 326 (1998), 975–980 | DOI | MR | Zbl
[7] Borovkov A., Borovkov K., Asymptotic Analysis of Random Walks. Heavy-Tailed Distributions, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl
[8] Kozyakin V., “Hardy type asymptotics for cosine series in several variables with decreasing power-like coefficients”, Int. J. Adv. Res. Math., 5 (2016), 35–51 | DOI
[9] Vatutin V. A., Topchii V. A., “Limit theorem for critical catalytic branching random walks”, Theory Probab. Appl., 49:3 (2005), 498–518 | DOI | MR | Zbl
[10] Yarovaya E. B., “Use of spectral methods to study branching processes with diffusion in a noncompact phase space”, Theor. Math. Phys., 88:1 (1991), 690–694 | DOI | MR | Zbl
[11] Yarovaya E., “Branching random walks with heavy tails”, Commun. Statist. Theory Methods, 42:16 (2013), 2301–2310 | DOI | MR
[12] Yarovaya E., “Criteria for transient behavior of symmetric branching random walks on $\mathbb{Z}$ and $\mathbb{Z}^2$”, New Perspectives on Stochastic Modeling and Data Analysis, eds. J. R. Bozeman, V. Girardin, C. H. Skiadas, ISAST, 2014, 283–294
[13] Yarovaya E. B., “The structure of the positive discrete spectrum of the evolution operator arising in branching random walks”, Dokl. Math., 92:1 (2015), 507–510 | DOI | MR | Zbl