Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2020_23_1_a7, author = {G. A. Zverkina}, title = {On the exponential convergence rate of the distribution for some nonregenerative reliability system}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {145--160}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a7/} }
TY - JOUR AU - G. A. Zverkina TI - On the exponential convergence rate of the distribution for some nonregenerative reliability system JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 145 EP - 160 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a7/ LA - ru ID - FPM_2020_23_1_a7 ER -
%0 Journal Article %A G. A. Zverkina %T On the exponential convergence rate of the distribution for some nonregenerative reliability system %J Fundamentalʹnaâ i prikladnaâ matematika %D 2020 %P 145-160 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a7/ %G ru %F FPM_2020_23_1_a7
G. A. Zverkina. On the exponential convergence rate of the distribution for some nonregenerative reliability system. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 145-160. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a7/
[1] Gnedenko B. V., Belyaev Yu. K., Solovev A. D., Matematicheskie metody v teorii nadezhnosti, Nauka, M., 1965
[2] Gnedenko B. V., Kovalenko I. N., Vvedenie v teoriyu massovogo obsluzhivaniya, Nauka, M., 1966 | MR
[3] Dub Dzh. L., Veroyatnostnye protsessy, Izd. inostr. lit., M., 1956
[4] Zverkina G. A., “Ob odnoi obobschennoi sisteme Erlanga–Sevastyanova i ee skorosti skhodimosti”, Fundament. i prikl. matem., 22:3 (2018), 57–82 | MR
[5] Shtoiyan D., Kachestvennye svoistva i otsenki stokhasticheskikh modelei, Mir, M., 1979
[6] Afanasyeva L. G., Tkachenko A. V., “On the convergence rate for queueing and reliability models described by regenerative processes”, J. Math. Sci., 218:2 (2016), 119–136 | DOI | MR | Zbl
[7] Asmussen S., Applied Probability i Queues, Springer, New York, 2003 | MR | Zbl
[8] Doeblin W., “Exposé de la théorie des chaînes simples constantes de Markov à un nombre fini d'états”, Rev. Math. Union Interbalkan., 2 (1938), 77–105
[9] Griffeath D., “A maximal coupling for Markov chains”, Z. Wahrsch. Verw. Gebiete, 31:2 (1975), 95–106 | DOI | MR | Zbl
[10] Kalimulina E., “Rate of convergence to stationary distribution for unreliable Jackson-type queueing network with dynamic routing”, Distributed Computer and Communication Networks, 19th International Conference, DCCN 2016, Commun. Comput. Inform. Sci., 678, eds. Vishnevskiy V. M., Samouylov K. E., Kozyrev D. K., Springer, Cham, 2016, 253–265 | DOI | Zbl
[11] Kalimulina E., “Analysis of unreliable open queueing network with dynamic routing”, Distributed Computer and Communication Networks, DCCN 2017, Commun. Comput. Inform. Sci., 700, eds. Vishnevskiy V. M., Samouylov K. E., Kozyrev D. K., Springer, Cham, 2017, 355–367 | DOI | Zbl
[12] Kato K., “Coupling lemma and its application to the security analysis of quantum key distribution”, Tamagawa Univ. Quantum ICT Research Inst. Bull., 4:1 (2014), 23–30
[13] Thorisson H., Coupling, Stationarity, and Regeneration, Springer, Berlin, 2000 | MR | Zbl
[14] Veretennikov A., Butkovsky O. A., “On asymptotics for Vaserstein coupling of Markov chains”, Stoch. Process. Appl., 123:9 (2013), 3518–3541 | DOI | MR | Zbl
[15] Veretennikov A. Yu., Zverkina G. A., “Simple proof of Dynkin's formula for single-server systems and polynomial convergence rates”, Markov Process. Relat. Fields, 20 (2014), 479–504 | MR | Zbl
[16] Zverkina G., “On strong bounds of rate of convergence for regenerative processes”, Distributed Computer and Communication Networks, 19th International Conference, DCCN 2016, Commun. Comput. Inform. Sci., 678, eds. Vishnevskiy V. M., Samouylov K. E., Kozyrev D. K., Springer, Cham, 2016, 381–393 | DOI | Zbl