Asymptotic behavior of large deviation probabilities for a~simple oscillating random walk
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 89-94

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers simple oscillating random walks with $\tilde{S}_n=\sum\limits^n_{i=1} \tilde{X}_i$, under the assumption that $\mathbf P (\tilde{X}_{n+1}=1\mid \tilde{S}_n>0)=p>1/2$. We show that the asymptotic behavior of probability to reach high level for the oscillating random walk and a standard random walk are similar up to a constant multiplier. The asymptotics for the maximum of a random walk and for the moment of the first exit beyond the high level are obtained.
@article{FPM_2020_23_1_a4,
     author = {E. L. Vetrova},
     title = {Asymptotic behavior of large deviation probabilities for a~simple oscillating random walk},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a4/}
}
TY  - JOUR
AU  - E. L. Vetrova
TI  - Asymptotic behavior of large deviation probabilities for a~simple oscillating random walk
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 89
EP  - 94
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a4/
LA  - ru
ID  - FPM_2020_23_1_a4
ER  - 
%0 Journal Article
%A E. L. Vetrova
%T Asymptotic behavior of large deviation probabilities for a~simple oscillating random walk
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 89-94
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a4/
%G ru
%F FPM_2020_23_1_a4
E. L. Vetrova. Asymptotic behavior of large deviation probabilities for a~simple oscillating random walk. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 89-94. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a4/