Asymptotic behavior of large deviation probabilities for a~simple oscillating random walk
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 89-94
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper considers simple oscillating random walks with $\tilde{S}_n=\sum\limits^n_{i=1} \tilde{X}_i$, under the assumption that $\mathbf P (\tilde{X}_{n+1}=1\mid \tilde{S}_n>0)=p>1/2$. We show that the asymptotic behavior of probability to reach high level for the oscillating random walk and a standard random walk are similar up to a constant multiplier. The asymptotics for the maximum of a random walk and for the moment of the first exit beyond the high level are obtained.
@article{FPM_2020_23_1_a4,
author = {E. L. Vetrova},
title = {Asymptotic behavior of large deviation probabilities for a~simple oscillating random walk},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {89--94},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a4/}
}
TY - JOUR AU - E. L. Vetrova TI - Asymptotic behavior of large deviation probabilities for a~simple oscillating random walk JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 89 EP - 94 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a4/ LA - ru ID - FPM_2020_23_1_a4 ER -
E. L. Vetrova. Asymptotic behavior of large deviation probabilities for a~simple oscillating random walk. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 89-94. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a4/