Branching random walks with alternating sign intensities of branching sources
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 75-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a continuous-time symmetric branching random walk on a multidimensional lattice with a finite set of particle generation centers, i.e., branching sources. The existence of a positive eigenvalue of the evolutionary operator means the exponential growth of the first moment of the total number of particles both at an arbitrary point and on the entire lattice. Branching random walks with positive or negative intensities of sources that have a simplex configuration are presented in the paper. It is established that the amount of positive eigenvalues of the evolutionary operator, counting their multiplicity, does not exceed the amount of the branching sources with positive intensity, while the maximal eigenvalue is simple. For branching random walk with different positive intensities of sources and arbitrary configuration for both finite and infinite variance of jumps, the critical values of sources' intensities are found, which allows us to prove the existence of positive eigenvalues of the evolutionary operator.
@article{FPM_2020_23_1_a3,
     author = {D. M. Balashova},
     title = {Branching random walks with alternating sign intensities of branching sources},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {75--88},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a3/}
}
TY  - JOUR
AU  - D. M. Balashova
TI  - Branching random walks with alternating sign intensities of branching sources
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 75
EP  - 88
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a3/
LA  - ru
ID  - FPM_2020_23_1_a3
ER  - 
%0 Journal Article
%A D. M. Balashova
%T Branching random walks with alternating sign intensities of branching sources
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 75-88
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a3/
%G ru
%F FPM_2020_23_1_a3
D. M. Balashova. Branching random walks with alternating sign intensities of branching sources. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 75-88. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a3/

[1] Beklemishev D. V., Kurs analiticheskoi geometrii i lineinoi algebry, Fizmatlit, M., 2007

[2] Vatutin V. A., Topchii V. A., “Kriticheskie vetvyaschiesya protsessy Bellmana–Kharrisa s dolgo zhivuschimi chastitsami”, Tr. MIAN, 282, 2013, 257–287 | Zbl

[3] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 2, Nauka, M., 1973 | MR

[4] Molchanov S. A., Yarovaya E. B., “Bolshie ukloneniya dlya simmetrichnogo vetvyaschegosya sluchainogo bluzhdaniya po mnogomernoi reshetke”, Tr. MIAN, 282, 2013, 195–211 | Zbl

[5] Rytova A. I., Yarovaya E. B., “Mnogomernaya lemma Vatsona i ee primenenie”, Matem. zametki, 99:3 (2016), 395–403 | MR | Zbl

[6] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[7] Yarovaya E. B., “Spektralnye svoistva evolyutsionnykh operatorov v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, Matem. zametki, 92:1 (2012), 115–131 | MR | Zbl

[8] Yarovaya E. B., “Spektralnaya asimptotika nadkriticheskogo vetvyaschegosya sluchainogo bluzhdaniya”, Teoriya veroyatn. i ee primen., 62:3 (2017), 518–541

[9] Antonelly F., Bosco F., “Viral evolution and adaptation as a multivariate branching process”, BIOMAT 2012, ed. R. P. Mondaini, World Scientific, 2013, 217–243 | DOI | MR

[10] Antonenko E. A., Yarovaya E. B., “On the number of positive eigenvalues of the evolutionary operator of branching random walk”, Branching Processes and Their Applications, Lect. Notes Stat., 219, Springer, Berlin, 2016, 41–55 | DOI | MR | Zbl

[11] Bulinskaya E. Vl., “Spread of a catalytic branching random walk on a multidimensional lattice”, Stoch. Process. Appl., 128:7 (2018), 2325–2340 | DOI | MR | Zbl

[12] Claus O., “Wilke probability of fixation of an advantageous mutant in a viral quasispecies”, Genetics, 163:2 (2003), 467–474

[13] González M., Martínez R., Slavtchova-Bojkova M., “Stochastic monotonicity and continuity properties of the extinction time of Bellman–Harris branching processes: an application to epidemic modelling”, J. Appl. Probability, 47 (2010), 58–71 | DOI | MR | Zbl

[14] Gradshteyn I. S., Ryzhik I. M., Tables of Integrals, Series and Products, Academic Press, San Diego, 2000 | MR

[15] Kolmogorov A. N., Petrovskii I., Piskunov N., “Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique”, Bull. Univ. Moscou Ser. Internat., Sec. A, Math. Mecanique, 1937, no. 1, 1–25 | Zbl

[16] Yarovaya E. B., “Positive discrete spectrum of the evolutionary operator of supercritical branching walks with heavy tails”, Methodology Computing Appl. Probability, 19:4 (2017), 1151–1167 | DOI | MR | Zbl