Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2020_23_1_a3, author = {D. M. Balashova}, title = {Branching random walks with alternating sign intensities of branching sources}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {75--88}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a3/} }
TY - JOUR AU - D. M. Balashova TI - Branching random walks with alternating sign intensities of branching sources JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2020 SP - 75 EP - 88 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a3/ LA - ru ID - FPM_2020_23_1_a3 ER -
D. M. Balashova. Branching random walks with alternating sign intensities of branching sources. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 75-88. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a3/
[1] Beklemishev D. V., Kurs analiticheskoi geometrii i lineinoi algebry, Fizmatlit, M., 2007
[2] Vatutin V. A., Topchii V. A., “Kriticheskie vetvyaschiesya protsessy Bellmana–Kharrisa s dolgo zhivuschimi chastitsami”, Tr. MIAN, 282, 2013, 257–287 | Zbl
[3] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 2, Nauka, M., 1973 | MR
[4] Molchanov S. A., Yarovaya E. B., “Bolshie ukloneniya dlya simmetrichnogo vetvyaschegosya sluchainogo bluzhdaniya po mnogomernoi reshetke”, Tr. MIAN, 282, 2013, 195–211 | Zbl
[5] Rytova A. I., Yarovaya E. B., “Mnogomernaya lemma Vatsona i ee primenenie”, Matem. zametki, 99:3 (2016), 395–403 | MR | Zbl
[6] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR
[7] Yarovaya E. B., “Spektralnye svoistva evolyutsionnykh operatorov v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, Matem. zametki, 92:1 (2012), 115–131 | MR | Zbl
[8] Yarovaya E. B., “Spektralnaya asimptotika nadkriticheskogo vetvyaschegosya sluchainogo bluzhdaniya”, Teoriya veroyatn. i ee primen., 62:3 (2017), 518–541
[9] Antonelly F., Bosco F., “Viral evolution and adaptation as a multivariate branching process”, BIOMAT 2012, ed. R. P. Mondaini, World Scientific, 2013, 217–243 | DOI | MR
[10] Antonenko E. A., Yarovaya E. B., “On the number of positive eigenvalues of the evolutionary operator of branching random walk”, Branching Processes and Their Applications, Lect. Notes Stat., 219, Springer, Berlin, 2016, 41–55 | DOI | MR | Zbl
[11] Bulinskaya E. Vl., “Spread of a catalytic branching random walk on a multidimensional lattice”, Stoch. Process. Appl., 128:7 (2018), 2325–2340 | DOI | MR | Zbl
[12] Claus O., “Wilke probability of fixation of an advantageous mutant in a viral quasispecies”, Genetics, 163:2 (2003), 467–474
[13] González M., Martínez R., Slavtchova-Bojkova M., “Stochastic monotonicity and continuity properties of the extinction time of Bellman–Harris branching processes: an application to epidemic modelling”, J. Appl. Probability, 47 (2010), 58–71 | DOI | MR | Zbl
[14] Gradshteyn I. S., Ryzhik I. M., Tables of Integrals, Series and Products, Academic Press, San Diego, 2000 | MR
[15] Kolmogorov A. N., Petrovskii I., Piskunov N., “Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique”, Bull. Univ. Moscou Ser. Internat., Sec. A, Math. Mecanique, 1937, no. 1, 1–25 | Zbl
[16] Yarovaya E. B., “Positive discrete spectrum of the evolutionary operator of supercritical branching walks with heavy tails”, Methodology Computing Appl. Probability, 19:4 (2017), 1151–1167 | DOI | MR | Zbl