Estimation of change-point models
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 51-73

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the testing and estimation of change-points, locations where the distribution abruptly changes, in a sequence of observations. Motivated by this problem, in this contribution we first investigate the extremes of Gaussian fields with trend, which then help us give asymptotic $p$-value approximations of the likelihood ratio statistics from change-point models.
@article{FPM_2020_23_1_a2,
     author = {L. Bai},
     title = {Estimation of change-point models},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {51--73},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a2/}
}
TY  - JOUR
AU  - L. Bai
TI  - Estimation of change-point models
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 51
EP  - 73
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a2/
LA  - ru
ID  - FPM_2020_23_1_a2
ER  - 
%0 Journal Article
%A L. Bai
%T Estimation of change-point models
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 51-73
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a2/
%G ru
%F FPM_2020_23_1_a2
L. Bai. Estimation of change-point models. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 51-73. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a2/