Estimation of change-point models
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 51-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the testing and estimation of change-points, locations where the distribution abruptly changes, in a sequence of observations. Motivated by this problem, in this contribution we first investigate the extremes of Gaussian fields with trend, which then help us give asymptotic $p$-value approximations of the likelihood ratio statistics from change-point models.
@article{FPM_2020_23_1_a2,
     author = {L. Bai},
     title = {Estimation of change-point models},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {51--73},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a2/}
}
TY  - JOUR
AU  - L. Bai
TI  - Estimation of change-point models
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 51
EP  - 73
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a2/
LA  - ru
ID  - FPM_2020_23_1_a2
ER  - 
%0 Journal Article
%A L. Bai
%T Estimation of change-point models
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 51-73
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a2/
%G ru
%F FPM_2020_23_1_a2
L. Bai. Estimation of change-point models. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 51-73. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a2/

[1] Piterbarg V. I., “O rabote Pikandsa «Veroyatnosti peresecheniya dlya gaussovskogo statsionarnogo protsessa»”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 27:5 (1972), 25–30 | MR | Zbl

[2] Piterbarg V. I., Dvadtsat lektsii o gaussovskikh protsessakh, MTsNMO, M., 2015

[3] Shiryaev A. N., “Ob optimalnykh metodakh v zadachakh skoreishego obnaruzheniya”, Teoriya veroyatn. i ee primen., 8:1 (1963), 26–51 | Zbl

[4] Adler R., Taylor J., Random Fields and Geometry, Springer Monographs Math., Springer, New York, 2007 | MR | Zbl

[5] Bai L., Dȩbicki K., Hashorva E., Luo L., “On generalised Piterbarg constants”, Methodol. Comput. Appl. Probab., 20 (2018), 137–164 | DOI | MR | Zbl

[6] D{ȩ}bicki K., “Ruin probability for Gaussian integrated processes”, Stoch. Process. Appl., 98:1 (2002), 151–174 | DOI | MR

[7] Dȩbicki K., Engelke S., Hashorva E., “Generalized Pickands constants and stationary max-stable processes”, Extremes, 20:3 (2017), 493–517 | DOI | MR

[8] Dȩbicki K., Hashorva E., “On extremal index of max-stable stationary processes”, Prob. Math. Statist., 37 (2017), 299–317 | MR

[9] D{ȩ}bicki K., Hashorva E., Ji L., “Tail asymptotics of supremum of certain Gaussian processes over threshold dependent random intervals”, Extremes, 17:3 (2014), 411–429 | DOI | MR

[10] D{ȩ}bicki K., Hashorva E., Ji L., Tabiś K., “Extremes of vector-valued Gaussian processes: Exact asymptotics”, Stoch. Process. Appl., 125:11 (2015), 4039–4065 | DOI | MR

[11] D{ȩ}bicki K., Hashorva E., Liu P., “Extremes of Gaussian random fields with regularly varying dependence structure”, Extremes, 20 (2017), 333–392 | DOI | MR

[12] D{ȩ}bicki K., Hashorva E., Liu P., “Uniform tail approximation of homogeneous functionals of Gaussian fields”, Adv. Appl. Prob., 49 (2017), 1037–1066 | DOI | MR

[13] Dȩbicki K., Kosiński K., “On the infimum attained by the reflected fractional Brownian motion”, Extremes, 17:3 (2014), 431–446 | DOI | MR

[14] Deelstra G., “Remarks on 'boundary crossing result for Brownian motion'”, Blätt. DGVFM, 21 (1994), 449–456 | DOI | Zbl

[15] Dieker A. B., “Extremes of Gaussian processes over an infinite horizon”, Stoch. Process. Appl., 115:2 (2005), 207–248 | DOI | MR | Zbl

[16] Dieker A. B., Mikosch T., “Exact simulation of Brown–Resnick random fields at a finite number of locations”, Extremes, 18 (2015), 301–314 | DOI | MR | Zbl

[17] Dieker A. B., Yakir B., “On asymptotic constants in the theory of Gaussian processes”, Bernoulli, 20:3 (2014), 1600–1619 | DOI | MR | Zbl

[18] Frick K., Munk A., Sieling H., “Multiscale change-point inference”, J. R. Stat. Soc. Ser. B. Stat. Methodol., 76 (2014), 495–580 | DOI | MR | Zbl

[19] Frick K., Munk A., Sieling H., “Wild binary segmentation for multiple change-point detection”, Ann. Statist., 42 (2014), 2243–2281 | DOI | MR

[20] Hashorva E., “Representations of max-stable processes via exponential tilting”, Stoch. Process. Appl., 128:9 (2018), 2952–2978 | DOI | MR | Zbl

[21] Hogan M., Siegmund D., “Large deviations for the maxima of some random fields”, Adv. Appl. Math., 7 (1986), 2–22 | DOI | MR | Zbl

[22] Jarušková D., Piterbarg V. I. Log-likelihood ratio test for detecting transient change, Statist. Probab. Lett., 81 (2011), 552–559 | DOI | MR | Zbl

[23] Levin B., Kline J., “The cusum test of homogeneity with an application in spontaneous abortion epidemiology”, Stat. Med., 4 (1985), 469–488 | DOI

[24] Lorden G., “Procedures for reacting to a change in distribution”, Ann. Math. Statist., 42 (1971), 1897–1908 | DOI | MR | Zbl

[25] Niu Y. S., Zhang H., “The screening and ranking algorithm to detect DNA copy number variations”, Ann. Appl. Statist., 6 (2012), 1306–1326 | DOI | MR | Zbl

[26] Page E. S., “Continuous inspection schemes”, Biometrika, 41 (1954), 100–115 | DOI | MR | Zbl

[27] Pickands J., III, “Upcrossing probabilities for stationary Gaussian processes”, Trans. Amer. Math. Soc., 145 (1969), 51–73 | DOI | MR | Zbl

[28] Piterbarg V., Asymptotic Methods in the Theory of Gaussian Processes and Fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, 1996 | MR

[29] Siegmund D., “Boundary crossing probabilities and statistical applications”, Ann. Statist., 14:2 (1986), 361–404 | DOI | MR | Zbl