Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 219-257

Voir la notice de l'article provenant de la source Math-Net.Ru

For $ T > 0 $, we prove theorems concerning sharp asymptotics of the probabilities $$ \mathbf P \biggl\{ \sup\limits_{t \in [0, T]} \sum\limits_{j=1}^n w_j^2(t) > u^2 \biggr \}, \mathbf P \biggl \{ \sup\limits_{t \in [0, T]} \sum\limits_{j=1}^n w_{j0,T}^2(t) > u^2 \biggr \}, $$ as $u \to \infty$, where $ w_j(t) $, $ j = 1, \dots, n$, are independent Wiener processes and $ w_{j0,T}(t) $, $ j = 1, \dots, n $, are independent Brownian bridges on the segment $ [0, T] $. Our research method is the double sum method for the Gaussian processes and fields. We also give an application of the obtained results to the statistical tests for the homogeneity hypothesis of $k$ one-dimensional samples.
@article{FPM_2020_23_1_a13,
     author = {V. R. Fatalov},
     title = {Supremum of the {Euclidean} norms of the multidimensional {Wiener} process and {Brownian} bridge: {Sharp} asymptotics of probabilities of large deviations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {219--257},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a13/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 219
EP  - 257
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a13/
LA  - ru
ID  - FPM_2020_23_1_a13
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 219-257
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a13/
%G ru
%F FPM_2020_23_1_a13
V. R. Fatalov. Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 219-257. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a13/