Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 219-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $ T > 0 $, we prove theorems concerning sharp asymptotics of the probabilities $$ \mathbf P \biggl\{ \sup\limits_{t \in [0, T]} \sum\limits_{j=1}^n w_j^2(t) > u^2 \biggr \}, \mathbf P \biggl \{ \sup\limits_{t \in [0, T]} \sum\limits_{j=1}^n w_{j0,T}^2(t) > u^2 \biggr \}, $$ as $u \to \infty$, where $ w_j(t) $, $ j = 1, \dots, n$, are independent Wiener processes and $ w_{j0,T}(t) $, $ j = 1, \dots, n $, are independent Brownian bridges on the segment $ [0, T] $. Our research method is the double sum method for the Gaussian processes and fields. We also give an application of the obtained results to the statistical tests for the homogeneity hypothesis of $k$ one-dimensional samples.
@article{FPM_2020_23_1_a13,
     author = {V. R. Fatalov},
     title = {Supremum of the {Euclidean} norms of the multidimensional {Wiener} process and {Brownian} bridge: {Sharp} asymptotics of probabilities of large deviations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {219--257},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a13/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2020
SP  - 219
EP  - 257
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a13/
LA  - ru
ID  - FPM_2020_23_1_a13
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2020
%P 219-257
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a13/
%G ru
%F FPM_2020_23_1_a13
V. R. Fatalov. Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 23 (2020) no. 1, pp. 219-257. http://geodesic.mathdoc.fr/item/FPM_2020_23_1_a13/

[1] Belyaev Yu. K., Piterbarg V. I., “Asimptotika srednego chisla A-tochek vybrosov gaussovskogo polya za vysokii uroven”, Vybrosy sluchainykh polei, ed. Yu. K. Belyaev, Izd-vo Mosk. un-ta, M., 1972, 62–89

[2] Borodin A.N., Salminen P., Spravochnik po brounovskomu dvizheniyu, Lan, SPb., 2000

[3] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979

[4] Ikeda N., Vatanabe S., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986

[5] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981 | MR

[6] Lidbetter M., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989

[7] Lifshits M. A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995

[8] Mischenko A. S., Fomenko A. T., Kurs differentsialnoi geometrii i topologii, Izd-vo Mosk. un-ta, M., 1980 | MR

[9] Nikitin Ya. Yu., Asimptoticheskaya effektivnost neparametricheskikh kriteriev, Nauka; Fizmatlit, M., 1995 | MR

[10] Novikov A. A., “O malykh ukloneniyakh gaussovskikh protsessov”, Matem. zametki, 29:2 (1981), 291–301 | MR | Zbl

[11] Piterbarg V. I., Asimptoticheskie metody v teorii gaussovskikh sluchainykh protsessov i polei, Izd-vo Mosk. un-ta, M., 1988

[12] Piterbarg V. I., Fatalov V. R., “Metod Laplasa dlya veroyatnostnykh mer v banakhovykh prostranstvakh”, UMN, 50:6 (1995), 57–150 | MR | Zbl

[13] Rudin U., Osnovy matematicheskogo analiza, Mir, M., 1976

[14] Rytov S. M., Vvedenie v statisticheskuyu radiofiziku, Nauka, M., 1966

[15] Fatalov V. R., “Asimptotiki veroyatnostei bolshikh uklonenii gaussovskikh polei”, Izv. AN Armenii. Matem., 27:6 (1992), 59–81 | MR

[16] Fatalov V. R., “Asimptotiki veroyatnostei bolshikh uklonenii gaussovskikh polei. Primeneniya”, Izv. AN Armenii. Matem., 28:5 (1993), 32–55

[17] Fatalov V. R., “Metod dvoinoi summy dlya gaussovskikh polei s parametricheskim mnozhestvom v prostranstve $l^p$”, Fundament. i prikl. matem., 2:4 (1996), 1117–1141 | MR | Zbl

[18] Fatalov V. R., “Bolshie ukloneniya dlya gaussovskikh protsessov v gelderovskoi norme”, Izv. RAN. Ser. matem., 67:5 (2003), 207–224 | MR | Zbl

[19] Fatalov V. R., “Vremena prebyvaniya i tochnye asimptotiki malykh uklonenii besselevskikh protsessov dlya $L^p$-funktsionalov, $ p > 0 $”, Izv. RAN. Ser. matem., 71:4 (2007), 73–105

[20] Fatalov V. R., “Ergodicheskie srednie pri bolshom znachenii $ T $ i tochnye asimptotiki malykh uklonenii dlya mnogomernogo vinerovskogo protsessa”, Izv. RAN. Ser. matem., 77:6 (2013), 169–206 | MR | Zbl

[21] Abrahamson I. G., “Exact Bahadur efficiencies for the Kolmogorov–Smirnov and Kuiper one- and two-sample statistics”, Ann. Math. Statist., 38:5 (1967), 1475–1490 | DOI | MR | Zbl

[22] Kiefer J., “$K$-sample analogues of the Kolmogorov–Smirnov and Cramér–v. Mises tests”, Ann. Math. Statist., 30:2 (1959), 420–447 | DOI | MR | Zbl

[23] Landau H. J., Shepp L. A., “On the supremum of a Gaussian process”, Sankhy_a: The Indian J. Stat., Ser. A. Sankhyà, A32:4 (1971), 369–378 | MR

[24] Marcus M. B., Shepp L. A., “Continuity of Gaussian processes”, Trans. Amer. Math. Soc., 151 (1970), 377–392 | DOI | MR

[25] Piterbarg V. I., “High deviations for multidimensional stationary Gaussian processes with independent coordinates”, Stability Problems for Stochastic Models, Proc. of the Fifteenth Perm Seminar (Perm, Russia, June 2–6, 1992), eds. V. M. Zolotarev, V. M. Kruglov, V. Yu. Korolev, VSP, Utrecht, 1994, 197–230

[26] Piterbarg V. I., “High excursions for nonstationary generalized chi-square processes”, Stoch. Proc. Appl., 53:2 (1994), 307–337 | DOI | MR | Zbl

[27] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer, Berlin, 1999 | MR | Zbl

[28] Simon B., Functional Integration and Quantum Physics, Academic Press, New York, 1979 | MR | Zbl